MSRC-5000SCA
Appendix C
rev. 2.1 |

Software Communications Architecture Specification

APPENDIX C CORE FRAMEWORK IDL

MSRC-5000SCA
Appendix C
rev. 2.1 |

Revision Summary

1.0 Initial Release

11 Updated IDL to reflect SCAS changes made for v1.1; updated comments.

2.0 Incorporate approved Change Proposals, numbers 175, 245, 277, 278, 282, 311, 336, 345.

21 Incorporate approved Change Proposals, numbers 142, 175, 245, 277, 278, 282, 306, 311,
336, 345, 360.

Change Proposals are controlled by the JTRS Change Control Board. CPs incorporated into the
SCA are considered "closed" and can be seen on the JTRS web site at:
www.jtrs.sarda.army.mil/docs/documents/sca_ccb.html.

Table of Contents

[APPENDIX C COre FrameWOrK IDLc.oouooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeesensenaesensensesanseesens C-1
(C.1 COre FIamMEWOTK IDL.eeieieieieeiieeece ettt e st e et e et e eseeseeseesseeesseeseaneeseeseensesessensessessenseeneensensensees .C-2
O R ST e e (U= C-50
[C.3 PUSNPOIS MOUUIE. ..ottt sttt ete e e et e st e st e te e teeeesnessneesseesseenseensanseanseenseensennsennsesnensnnesees C-53
O e N1 e T Y e e [V =, C-67
C.5 LOGSENVICE MOUUIE. ...ttt ettt es e etteesteeenteesabeeenseeanseesntesareasnseesnreesnreesnseesnseesn C-80

MSRC-5000SCA
Appendix C
rev. 2.1 |

APPENDIX C CORE FRAMEWORK IDL

The CF interfaces are expressed in CORBA IDL. The IDL has been generated directly by the
Rational Rose UML software modeling tool. This “forward engineering” approach ensures that the
IDL accurately reflects the architecture definition as contained in the UML models. Any IDL
compiler for the target language of choice may compile the generated IDL.

The CF interfaces are contained in the CF CORBA module. Additionally, IDL modules are
provided for interfaces that extend the CF::Port interface by defining basic data sequence types

and for pushing data to a consumer or pulling datafrom a producer. The LogService CORBA
Module contains the interfaces and types for alog service. shows the relationship
between these CORBA modules.
CF
LogSenice
% \
/ AN
/ AN
/ PortTypes \
y
/ % \
/ N
/ 7 ~ \
e .
/ - ~
PullPorts PushPorts

Figure C-1. Relationships Between CORBA Modules

The IDL modules are also available in electronic form.

MSRC-5000SCA

Appendix C
rev. 2.1 |
C.1 CORE FRAMEWORK IDL.
O O
Application

LoadableDev
ice

Executable
Device

ApplicationF
actory

TestableObj
ect

o o O 0

ResourceFa i
Resource PortSupplier
Port PropertySet ctory pp!

O
DeviceMana O O O O

ger AggregateD DomainMan pje FileManager FileSystem LifeCycle
evice ager

Figure C-2. CF CORBA Module

The following isthe CF IDL generated from the Rational Rose model, version 2000e.

#i f ndef __CF_DEFI NED
#defi ne __ CF_DEFI NED

/*

/* This package provides the nain framework for al

*/

Cmdentification
9X% %P0 Y% %N * /

nmodul e CF {

nterface File;

nt erface Resource;

nterface Application

nt erface Devi ce;

nterface ApplicationFactory;

i
i
i
i
i
i nterface Devi ceManager

objects within the radio.

/* This type is a CORBA |DL struct type which can be used to hold any

CORBA basic type or static IDL type. */

struct DataType {
/* The id attribute indicates the kind of value and type

(e.g., frequency, preset, etc.). The id can be an UU D string,

an integer string, or a name identifier. */
string id;

/* The value attribute can be any static IDL type or CORBA basic

type. */
any val ue;

}s

/* This exception indicates an invalid file nane was passed to a File
Service operation. The nmessage provides infornation describing why the

filenanme was invalid. */

exception InvalidFileNane {

M SRC-5000SCA
Appendix C
rev. 2.1 |
string neg;
H
/* This exception indicates a file-related error occurred. The nessage
shal | provide information describing the error. The nessage can be
used for logging the error. */
exception FileException {
string neg;

/* The error code that corresponds to the error message. */
unsi gned short error Code;

H
/* This exception indicates an invalid component profile error. */

exception InvalidProfile {

s

/* The Properties is a CORBA |IDL unbounded sequence of CF DataType(s),
whi ch can be used in defining a sequence of nanme and val ue pairs. */

t ypedef sequence <Dat aType> Properties;
/* This exception indicates an invalid CORBA object reference error. */
exception_Invalidijecthference {
string nsg;
b
/* This type is a CORBA unbounded sequence of octets. */
t ypedef sequence <octet> COct et Sequence;
/* This type defines a sequence of strings */
t ypedef sequence <string> StringSequence;

/* This exception indicates a set of properties unknown by the
conmponent. */

exception UnknownProperties ({
Properties invalidProperties;
1

/* Devi ceAssi gnment Type defines a structure that associates a component
with the Device upon which the conponent is executing on. */

struct Devi ceAssi gnnent Type {
string conponent | D
string assi gnedDevi cel D

}s

/* The | DL sequence, DeviceAssi gnment Sequence, provi des a unbounded
sequence of 0..n of DeviceAssignnent Type. */

typedef sequence <Devi ceAssi gnnent Type> Devi ceAssi gnnment Sequence,;

C-3

MSRC-5000SCA
Appendix C
rev. 2.1 |

/* This type defines an unbounded sequence of Devices.

The IDL to Ada mapping has a problemwi th self referential interfaces.
To get around this problem the interface Device forward declaration
has been created and this type has been noved outside of the Device
interface. */

t ypedef sequence <Devi ce> Devi ceSequence;

/* This interface defines behavior for a Device that can be used for
addi ng and renoving Devices fromthe Device. This new interface can be
provided via inheritance or as a "provides port" for any Device that
is capabl e of an aggregate rel ati onship. Aggregated Devices use this
interface to add or renove thensel ves from conposite Devices when being
created or torn-down. */

i nterface AggregateDevice {
/* The readonly devices attribute contains a Iist of devices that
have been added to this Device or a sequence length of zero if
the Devi ce has no aggregation rel ationships with other Devices.
*/

readonly attribute DeviceSequence devi ces;

/* This operation provides the mechanismto associate a Device
wi t h anot her Device. Wena Devi ce changes state or it is being
torn down, this affects its associated Devices.

The addDevi ce operati on adds the input associ atedDevi ce paraneter
to the AggregateDevice's devices attribute when the
associ at edDevi ce does not exist in the devices attribute. The
associ at edDevi ce is ignored when duplicated.

The addDevi ce operation wites a FAILURE_ALARM | og record, upon
unsuccessful addi ng of an associ atedDevice to the
Aggr egat eDevi ce's devices attribute.

Thi s operation does not return any val ue.

The addDevi ce operation raises the CF InvalidObj ect Ref erence when
the i nput associ atedDevice is a nil CORBA object reference.
@ oseui d 3A5DAE9102D6 */
voi d addDevice (
i n Device associ at edDevi ce

)

rai ses (IlnvalidObjectReference);

/* This operation provides the nechanismto disassociate a Device
wi t h anot her Devi ce.

The renoveDevi ce operation renmoves the input associ atedDevice
paranmeter fromthe AggregateDevice's devices attribute.

The renoveDevice operation wites a FAILURE_ALARM | og record,
upon unsuccessful renoval of the associ atedDevice fromthe

C-4

MSRC-5000SCA
Appendix C

rev. 2.1 |
Aggr egat eDevi ce' s devices attribute.

Thi s operation does not return any val ue.

The renoveDevi ce operation rai ses the CF I nvali dObject Reference
when the i nput associatedDevice is a nil CORBA object reference
or does not exist in the aggregate Device's devices attribute.
@ oseui d 3A5DAE9102D8 */
voi d renmoveDevice (

in Device associ at edDevi ce

)

rai ses (IlnvalidObject Reference);
i

/* The FileSysteminterface defines the CORBA operations to enable
renote access to a physical file system */

interface Fil eSystem {
/* This exception indicates a set of properties unknown by the
Fi |l eSystem obj ect. */

exception UnknownFi |l eSystenProperties {
Properties invalidProperties;
H

/* This constant indicates file systemsize. */

const string SIZE = "SI ZE";
/* This constant indicates the avail able space on the file
system */

const string AVAI LABLE_SI ZE = "AVAI LABLE_SPACE";

/* The renove operation renoves the file with the given fil enane.
This operation ensures that the filename is an absol ute pathnane
of the file relative to the target FileSystem If an error
occurs, this operation raises the appropriate exception:

CF I nval i dFil enane - The filenane is not valid.
CF Fil eException - Afile-related error occurred during
t he operation.
@ oseui d 364B4B2E26B0 */
void remove (
in string fil eNane

rai ses (FileException, InvalidFileNane);

/* The copy operation copies the source file with the specified
sourceFil eName to the destination file with the specified
destinationFil eNane. This operation ensures that the

sour ceFi | eNane and destinati onFil eNanme are absol ute pat hnames
relative to the target FileSystem |If an error occurs, this
operation raises the appropriate exception:

MSRC-5000SCA

Appendix C
rev. 2.1 |
CF I nvalidFil enane - The filenane is not valid.
CF Fil eException - Afile-related error occurred during

t he operation.
@ oseui d 364B4B5A0640 */
void copy (
in string sourceFil eNane,
in string destinationFileNane

)

rai ses (lnvalidFileName, FileException);

/* The exists operation checks to see if a file exists based on

the filenane paranmeter. This operation ensures that the fil enane
is a full pathname of the file relative to the target FileSystem
and raise an CF InvalidFileNanme exception if the nane is invalid.

This operation shall return True if the file exists, otherw se
Fal se shal |l be returned.
@ oseui d 3665751C2AA0 */
bool ean exists (
in string fil eNane

rai ses (lnvalidFil eNane);

/* The list operation returns a list of filenames based upon the
search pattern given. The |ist operation supports the follow ng
wi | dcard characters:

(1) * used to match any sequence of characters (including null).
(2) ? used to match any single character

These wildcards may only be applied to the base filenanme in the
search pattern given. For exanple, the following are valid
search patterns

"/tp/files/ *.*" Returns all files and directories within the
"/trp/files" directory. Directory names shall be indicated with
a"/" at the end of the nane.

"/tnp/files/foo*" Returns all files beginning with the letters
"foo" in the "/tnp/files directory".

"/trp/files/f??" Returns all 3 letter files beginning with the
letter f inthe "/tnp/files directory".

The list operation raises the CF InvalidFil eNane excepti on when
the input pattern does not start with a slash '/' or cannot be
interpreted due to unexpected characters.”
@ oseui d 36669644E5F0 */
StringSequence list (

in string pattern

)

rai ses (lnvalidFil eNane);

/* The create operation creates a new Fil e based upon the
provided file name and returns a File to the opened file. A nul
file is returned and a rel ated exception shall be raised if an
error occurs.

M SRC-5000SCA
Appendix C
rev. 2.1 |
CF I nvalidFil enane - The filenane is not valid.
CF Fil eException - File already exists or another file
error occurred.
@ oseui d 36CAC30F37A8 */
File create (
in string fil eNane

)

rai ses (lnvalidFileName, FileException);

/* The open operation opens a file based upon the input fil eNane.
The read_Only paraneter indicates if the file should be opened
for read access only. Wen read Only is false the file is opened
for wite access.

The open operation returns a File conponent paraneter on
successful conpletion. The open operation returns a null file

conponent reference if the open operation is unsuccessful. |If
the file is opened with the read Only flag set to true, then
wites to the file will be considered an error

The open operation raises the CF FileException if the file does
not exist or another file error occurred.

The open operation raises the CF InvalidFil ename excepti on when
the filename is not a valid file nane or not an absol ute
pat hname.
@ oseui d 36CAC3ECE2A0 */
File open (
in string fil eNane,
in boolean read_Only

)

rai ses (lnvalidFileName, FileException);

/* The nkdir operation create a FileSystemdirectory based on the
directoryName given. This operation creates all parent
directories required to create the directory path given. If an
error occurs, this operation raises the appropriate exception

Exceptions/ Errors
CF I nval i dFi | enane - The directory name is not valid.
CF Fil eException - Afile-related error occurred during
t he operation.
@ oseui d 388F55390C58 */
void nkdir (
in string directoryNane

)

rai ses (lnvalidFileName, FileException);

/* The rndir operation renoves a Fil eSystem directory based on
the directoryName given. If an error occurs, this operation
rai ses the appropriate exception.

Exceptions/Errors

CF I nval i dFil enane - The directory name is not valid.

CF Fil eException - Directory does not exist or another
file-related error occurred.

MSRC-5000SCA

Appendix C
rev. 2.1 |
@ oseui d 388F554033F8 */
void rndir (
in string directoryNane
)

rai ses (lnvalidFileNanme, FileException);

/* The query operation returns file systeminformation to the
calling client based upon the given fileSystenProperties' |D

As a minimum the FileSystem query operation supports the
followi ng fil eSystenProperties:

1. SIZE - an ID value of "SIZE causes query to return an unsigned
long long containing the file systemsize (in octets).

2. AVAI LABLE SPACE - an | D val ue of "AVAILABLE SPACE" causes the
guery operation to return an unsigned |ong | ong containing the
avai l abl e space on the file system (in octets).

The query operation raises the UnknownFil eSystenProperties
exception when the given file system property is not recognized.
@ oseui d 389196D696B0 */
voi d query (

i nout Properties fileSystenProperties

)

rai ses (UnknownFil eSystenProperties);
b

/* The File interface provides the ability to read and wite files
residing within a CF conpliant distributed FileSystem A file can be
t hought of conceptually as a sequence of octets with a current
filepointer describing where the next read or wite will occur.

This filepointer points to the beginning of the file upon construction
of the file object. The File interface is nodeled after the POSI X/ C
file interface. */

interface File {
/* This exception indicates an error occurred during a read or
wite operation to a File. The nessage provides information
describing why the I/O error occurred. */

exception | OException {
/* The error code that corresponds to the error nmessage. */
unsi gned short error Code;
string nsg;

}s

/* This exception indicates the file pointer is out of range
based upon the current file size. */

exception InvalidFilePointer {
H
/* The readonly fileName attribute contains the file nane given

to the FileSystem open/create operation. The syntax for a
filenane is based upon the UNI X operating system That is, a

C-8

MSRC-5000SCA
Appendix C
rev. 2.1 |
sequence of directory nanes separated by forward sl ashes (/)
followed by the base filenane. The fileNanme attribute will
contain the filename given to the FileSystem:open operation. */

readonly attribute string fil eNane;
/* The readonly filePointer attribute contains the file position
where the next read or wite will occur. */

readonly attribute unsigned |ong fil ePointer

/* The read operation reads octets fromthe file referenced up to
t he nunber specified by the | ength parameter and change the val ue
of the filePointer attribute forward by the nunber of octets
actually read. The read operation only reads |less than the
maxi mum nunber of octets specified in the I ength paraneter when
an end of file is encountered.

The read operation returns via the out Message parameter an CF

Cct et Sequence that equals the number of octets actually read from
the File. |If the filePointer attribute value reflects the end of
the File, the read operation returns a 0-length CF COctet Sequence.

The read operation rai ses the | OExcepti on when a read error
occurs.
@ oseui d 364B3D91DA40 */
void read (
out Cctet Sequence dat a,
in unsigned long length

rai ses (1 OException);

/* The wite operation wites data to the file referenced. If the
wite is successful, the wite operation shall increnent the
filePointer attribute to reflect the nunber of octets witten. |f
the wite is unsuccessful, the filePointer attribute value is

mai ntained or is restored to its value prior to the wite
operation call.

Thi s operation does not return any val ue.

The write operation raises the | Oexception when a wite error
occurs.
@ oseui d 364B3DA2AFDO */
void wite (
i n OctetSequence data

rai ses (1 COException);

/* The sizeOf operation returns the current size of the file.
The CF FileException is raised when a file-releated error occurs
(e.g. the file does not exist anynore).
@ oseui d 36AE182BBF90 */
unsi gned | ong sizeO' ()

rai ses (Fil eException);

/* The close operation releases any OE file resources associ ated

C-9

M SRC-5000SCA
Appendix C
rev. 2.1 |
with the conponent. The close operation makes the file
unavail able to the conponent

A client should release its CORBA File reference after closing
the File. The close operation raises CF Fil eException exception
when it cannot successfully close the file.
@ oseui d 388E0477F138 */
void close ()

rai ses (Fil eException);

/* The setFil ePointer operation positions the file pointer where
the next read or wite will occur.

The setFil ePoi nter operation sets the filePointer attribute val ue
to the input filePointer.

Thi s operation does not return anyval ue.

The setFil ePoi nter operation raises the CF Fil eException when the
File can not be successfully accessed to set thefil ePointer
attribute. The setFilePointer operation raises the
I nval i dFi | ePoi nter exception when the fil ePointer
par anet er exceeds the file size.
@ oseui d 39088B800D38 */
voi d setFil ePointer (
in unsigned |ong fil ePointer

)

rai ses (lnvalidFilePointer, FileException);
1

/* A ResourceFactory is used to create and tear down a Resource. The
ResourceFactory interface is designed after the Factory Design
Patterns. Each ResourceFactory object creates a specific type of
Resource within the radio. The ResourceFactory interface provides a
one-step solution for creating a Resource, reducing the overhead of
starting up Resources. |In CORBA, there are two separate object
reference counts. One for the client side and one for the server side.
The Factory keeps a server-side reference count of the nunber of
clients that have requested the resource. Wen a client is done with a
resource, the client releases the client resource reference and calls
rel easeResource to the ResourceFactory. When the server-side reference
goes to zero, the server resource object is released fromthe ORB that
causes the resource to be destroyed. */

i nterface ResourceFactory ({
/* This type defines the identity of a Resource created by the
ResourceFactory. */

t ypedef unsi gned short ResourceNunilype;

/* This exception indicates the resource nunber does not exist in
t he ResourceFactory. */

exception I nvali dResourceNumber {

s

C-10

MSRC-5000SCA
Appendix C
rev. 2.1 |

/* This exception indicates that the shutdown nethod failed to
rel ease the ResourceFactory fromthe CORBA environnment due to the
fact the Factory still contains Resources. The nessage is
conponent - dependent, providing additional information describing
why the shutdown failed. */

exception ShutdownFailure {
/* This nessage indicates the reason for the shutdown
failure. */
string mneg;

s

/* This operation provides the capability to create Resources in
the same process space as the ResourceFactory or to return a
Resource that has already been created. This behavior is an
alternative approach for creating a Resource to the

Devi ce: : execut e operations.

The ResourceNunber is the identifier for Resource. The
qualifiers are paranmeter values used by the ResourceFactory in
creation of the Resource. The ApplicationFactory can deternine
the values to be supplied for the qualifiers fromthe description
in the ResourceFactory's Software Profile. The qualifiers may be
used to identify, for exanple, specific subtypes of Resources
created by a ResourceFactory.

If no Resource existsfor the given resourceNunber, the

creat eResource operation creates a Resource. |If the Resource

al ready exists, that Resource is returned. The createResource
operation assigns the given resourceNunber to a new Resource and
set a reference count to one or, in the case that the Resource
al ready exists, increnent the count by one. The reference count is
used to indicate the nunber of tines that a specific Resource
ref erence has been given to requesting clients. This ensures
that the ResourceFactory does not release a Resource that has a
reference count greater than 0. (Multiple clients could request
the rel ease of the Resource after obtaining a reference to the
Resour ce) .

The createResource operation returns a reference to the created
Resource or the existing Resource. The createResource operation
returns a nil CORBA conponent reference when the operation is
unable to create or find the Resource.

Thi s operation does not raise any exceptions.
@ oseui d 356B1F02C620 */
Resource creat eResource (

i n Resour ceNunilfype resour ceNumnber,

in Properties qualifiers

)

/* In CORBA there is client side and server side representation
of a Resource. This operation provides the nmechani sm of

rel easing the Resource in the CORBA environment on the server
side when all clients are through with a specific Resource. The

C-11

MSRC-5000SCA
Appendix C
rev. 2.1 |

client still has to release its client side reference of the
Resour ce.

The rel easeResource operation decrenents the reference count for
the specified resource, as indicated by the resourceNunber. The
rel easeResource operation nakes the Resource no |onger avaliable
(ie, it is released fromthe CORBA environnment) when the
Resource's reference count is zero

Thi s operation does not return a val ue.

The rel easeResource operation rai ses the Invali dResourceNunber
exception if an invalid resourceNunber is received.
@ oseui d 356B1F4E9140 */
voi d rel easeResource (
i n Resour ceNunilfype resour ceNumber

rai ses (Invali dResourceNunber);

/* In CORBA there is client side and server side representation
of a ResourceFactory. This operation provides the nechani smfor
rel easing the ResourceFactory fromthe CORBA environnent on the
server side. The client has the responsibility to release its
client side reference of the ResourceFactory.

The shutdown operation results in the ResourceFactory being
unavail able to any subsequent calls to its object reference (i.e.
it is released fromthe CORBA environnment).

Thi s operation does not raise any exceptions.

The shutdown operation raises the ShutdownFailure exception for
any error that prevents the shutdown of the ResourceFactory.
@ oseui d 356C2593F700 */
voi d shutdown ()
rai ses (ShutdownFail ure);

}s

/* Multiple, distributed FileSystens may be accessed through a

Fi |l eManager. The Fil eManager interface appears to be a single

Fil eSystem al t hough the actual file storage may span multiple physica
file systems. This is called a federated file system A federated file
systemis created using the nmount and unnount operations. Typically,

t he Domai n Manager or systeminitialization software will invoke these
operations.

The Fil eManager inherits the IDL interface of a FileSystem Based upon
t he pathnane of a directory or file and the set of mounted fil esystens,
the Fil eManager will delegate the FileSystem operations to the
appropriate FileSystem For exanple, if a FileSystemis nounted at

/ ppc2, an open operation for a file called /ppc2/profile.xnm would be
del egated to the nounted Fil eSystem The nmounted FileSystemw || be
given the filenanme relative to it. In this exanple the Fil eSystenm s
open operation would receive /profile.xm as the fileName argunent.

C-12

MSRC-5000SCA
Appendix C
rev. 2.1 |

Anot her exanple of this concept can be shown using the copy operation.
When a client invokes the copy operation, the FileManager w |l del egate
operations to the appropriate FileSystens (based upon supplied

pat hnanmes) thereby all owi ng copy of files between fil esystens.

If a client does not need to nount and unmount FileSystens, it can
treat the Fil eManager as a Fil eSystem by CORBA wi deni ng a Fil eManager
reference to a FileSystemreference. One can always w den a

Fil eManager to a Fil eSystem since the Fil eManager is derived froma
Fil eSystem

The Fil eManager's inherited Fil eSystem operations behavi or inmplenents
the Fil eSystem operations agai nst the mounted file systens. The

Fil eSystem operations ensure that the fil ename/directory argunents
given are absol ute pathnanes relative to a nounted Fil eSystem The

Fil eManager's Fil eSystem operations renoves the Fil eSystem nmounted nane
fromthe input fil eNane before passing the fileNane to an operation on
a mounted Fil eSystem

The Fil eManager uses the mounted Fil eSystem for Fil eSystem operations
based upon the nounted Fil eSystem nane that exactly natches the input
fileNane to the | owest matching subdirectory.

The query operation returns the conbi ned nmounted file systens
information to the calling client based upon the given input
fileSystenProperties' IDs. As a mninum the query operation supports
the followi ng input fileSystenProperties |Ds:

1. SIZE - a property itemID value of "SIZE'" will cause the query
operation to return the conbined total size of all the mounted file
system as an unsigned |ong | ong property val ue.

2. AVAI LABLE SPACE - a property item|D value of "AVAILABLE SPACE" wil |l
cause the query operation to return the conbined total avail able space
(in octets) of all the nounted file system as unsigned | ong | ong
property val ue.

The query operation raises the UnknownFil eSystenProperties exception
when the input fileSystenProperties paraneter contains an invalid
property ID. */

interface Fil eManager : FileSystem {
/* The Mount structure identifies a FileSystemnounted within a
Fi | eManager. */

struct Munt Type {

Fil eSystem fs;
string nount Poi nt;

s

/* This type defines an unbounded sequence of nounted
Fil eSystenms. */

t ypedef sequence <Mount Type> Mbunt Sequence;

/* This exception indicates a nmount point does not exist within
t he Fil eManager */

C-13

MSRC-5000SCA
Appendix C
rev. 2.1 |

excepti on NonExi st ent Mount {
1

/* This exception indicates the FileSystemis a null (nil) object
reference. */

exception InvalidFil eSystem {

}s

/* This exception indicates the mount point is already in use in
the file manager. */

excepti on Mount Poi nt Al readyExi sts {
I

/* The Fil eManager supports the notion of a federated file
system To create a federated file system the nount operation
associated a FileSystemwith a mount point (a directory name).

The mount operationassoci ates the specified FileSystemwi th the
gi ven mount Point. A nount Poi nt nane begins with a "/". A
nount Point nane is a logical directory nane for a FileSystem

The mount operation raises the NonExi stent Mbunt exception when
t he nmount Poi nt (directory) nane is not an absol ute pathnane
relative to the nounted file.

The nmount operation raises the MuntPoint Al readyExi sts exception
when the mount Poi nt already exists in the file nmanager.

The InvalidFil eSystem exception is rai sed when the input
FileSystemis a null object reference.
@ oseui d 36FAA01001E0 */
voi d mount (

in string nount Poi nt,

in FileSystemfile System

)

rai ses (lnvalidFileNane, InvalidFileSystem

Mount Poi nt Al r eadyExi st s);

/* The unnount operation renoves a nounted FileSystemfromthe
Fi | eManager whose nounted name matches the i nput nount Poi nt nane.
The unnount operation raises NonExi stent Mount when the nount
poi nt does not exist within the FileMnager.
@ oseui d 36FAA07A010E */
voi d unmount (
in string nount Poi nt

)
rai ses (NonExi st ent Mount);

/* The getMounts operation returns the FileManager's nounted
Fi | eSystens.

@ oseui d 3895C9C3A0F0 */

Mount Sequence get Mounts ();

C-14

MSRC-5000SCA
Appendix C
rev. 2.1 |
1

/* This interface provides operations for nanagi ng associ ati ons between
ports. An application defines a specific Port type by specifying an
interface that inherits the Port interface. An application establishes
the operations for transferring data and control. The application also
est abl i shes the nmeaning of the data and control values. Exanples of
how applications may use ports in different ways include: push or pull,
synchronous or asynchronous, nono- or bi-directional, or whether to use
flow control (e.g., pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is conponent
dependent .

Note 1: The CORBA specification defines only a mninmmsize for each
basic IDL type. The actual size of the data type is dependent on the

| anguage (defined in the | anguage mappi ngs) as well as the Central
Processing Unit (CPU) architecture used. By using these CORBA basic
data types, portability is maintained between conponents inplenented in
differing CPU architectures and | anguages.

Note 2: How conponents' ports are connected is described in the
software assenbly descriptor file of the Donmain Profile. */

interface Port {
/* This exception indicates one of the follow ng errors has
occurred in the specification of a Port association
errorCode 1 neans the Port conponent is invalid (unable to

narrow obj ect reference) or illegal object
ref erence,

errorCode 2 neans the Port name is not found (not used by this
Port). */

exception InvalidPort {
string nseg;
unsi gned short error Code;

s

/* This exception indicates the Port is unable to accept any
addi ti onal connections. */

exception QOccupi edPort {

s

/* The connect Port operation nakes a connection to the conponent
identified by the input paraneters. The connectPort operation
establishes only half of the association.

A port may support several connections. The input connectionlD
is a unique identifier to be used by di sconnectPort when breaki ng
this specific connection.

The connectPort operation raises the InvalidPort exception when
t he i nput connection paraneter is an invalid connection for this
Port. The QOccupiedPort exception is raised when the Port is
fully occupi ed and unable to accept connecti ons.

C-15

MSRC-5000SCA
Appendix C
rev. 2.1 |
@ oseui d 38CL759DA718 */
voi d connect Port (
in Qbject connection,
in string connectionlD

)

rai ses (lnvalidPort, OccupiedPort);

/* The disconnect Port operation breaks the connection to the
conponent identified by the input paraneters.

The InvalidPort exception is raised when the nane passed to the
operation is invalid.
@ oseui d 38C175A5DC10 */
voi d di sconnect Port (
in string connectionlD

)

rai ses (lnvalidPort);
1

/* The LifeCycle interface defines the generic operations for
initializing or releasing an instantiated conponent specific data
and/ or processing elenents. */

interface LifeCycle {
/* This exception indicates an error occurred during conponent
initialization. The nessages provides additional infornmation
descri bing the reason why the error occurred. */

exception InitializeError {
StringSequence errorMessages;
H

/* This exception indicates an error occurred during conponent
rel easebj ect. The nmessages provides additional information
descri bing the reason why the errors occurred. */

exception Rel easeError {
StringSequence errorMessages;
i

/* The purpose of the initialize operation is to provide a
mechanismto set an object to an known initial state. (For
exanpl e, data structures nay be set to initial values, menory nmay
be al |l ocated, hardware devices nay be configured to sone state,
etc.).

Initialization behavior is inplenmentation dependent.
This operation raises the InitializeError when an initialization
error occurs.
@ oseui d 37DD15FA01C2 */
void initialize ()
raises (lnitializeError);

/* The purpose of the rel easeCbject operation is to provide a

C-16

MSRC-5000SCA
Appendix C
rev. 2.1 |

means by which an instantiated conponent may be torn down. The
rel easeObj ect operation releases itself fromthe CORBA ORB.

The rel easeObj ect operation releases all internal nenmory

al l ocated by the conmponent during the life of the component. The
rel easeCbj ect operation tears down the conponent (i.e. released
fromthe CORBA environnent). The rel ease(hject operation

rel eases conponents fromthe Operating Environment.

This operation raises a Rel easeError when a rel ease error occurs.
@ oseui d 37DD15FA01C3 */
voi d rel ease(hj ect ()

rai ses (Rel easeError);

}s

/* The Testabl eCbject interface defines a set of operations that can be
used to test conponent inplenentations. */

i nterface Testabl elbject {
/* This exception indicates the requested testid for a test to be
perfornmed is not known by the conmponent. */

exception UnknownTest {

}s

/* The runTest operation allows conponents to be "bl ackbox"
tested. This allows Built-In Test (BIT) to be inplenmented and
this provides a neans to isolate faults (both software and
hardware) within the system

The runTest operation uses the testid paraneter to deternine
which of its predefined test inplenentations should be perforned.
The testVal ues paraneter Properties (id/value pair(s)) are used
to provide additional information to the inplenmentation-specific
test to be run. The runTest operation returns the result(s) of
the test in the testVal ues paraneter.

Tests to be inplenmented by a conponent are conponent - dependent
and are specified in the conponent's Properties Descriptor

Valid testid(s) and both input and ouput testValues (properties)
for the runTest operation, at a mninmum are test properties
defined in the properties test elenment of the conmponent's
Properties Descriptor (refer to Appendix D Domain Profile). The
testid paraneter corresponds to the XML attribute testid of the
property elenent test in a propertyfile.

Bef ore an UnknownProperties exception is raised by the runTest
operation all inputValues properties are validated (i.e., test
properties defined in the propertyfile(s) referenced in the
conponent's SPD).

The runTest operation does not execute any testing when the input

testid or any of the the input testValues are not known by the
conponent or are out of range.

C-17

MSRC-5000SCA
Appendix C

rev. 2.1 |
Thi s operation does not return a val ue.

The runTest operation raises the UnknownTest exception when there
is no underlying test inplenmentation that is associated with the
i nput testid given.

The runTest operation raises CF UnknownProperties exception when
the i nput paraneter testValues contains any DataTypes that are
not known by the component's test inplenentation or any val ues
that are out of range for the requested test. The exception
paranmeter invalidProperties contains the invalid inputValues
properties id(s) that are not known by the conponent or the
val ue(s) are out of range.
@ oseui d 38A583C40208 */
void runTest (

in unsigned long testid,

i nout Properties testVal ues

)

rai ses (UnknownTest, UnknownProperties);
I

/* The PropertySet interface defines configure and query operations to
access conponent properties/attributes. */

interface PropertySet {
/* This exception indicates the configuration of a conponent has
failed (no configuration at all was done). The message provides
additional information describing the reason why the error
occurred. The invalid properties returned indicates the
properties that were invalid. */

exception InvalidConfiguration {
Properties invalidProperties;
string mneg;

}s

/* This exception indicates the configuration of a conponent was
partially successful. The invalid properties returned indicates
the properties that were invalid. */

exception Partial Configuration {
Properties invalidProperties;
1

/* The purpose of this operation is to allow id/value pair
configuration properties to be assigned to conponents
i mpl enenting this interface.

The configure operation shall assign values to the properties as
indicated in the configProperties argument. An conponent's SPD
profile indicates the valid configuration values. Valid
properties for the configure operation are at a mni mumthe
configure readwite and witeonly properties referenced in the
conmponent's SPD

C-18

M SRC-5000SCA
Appendix C
rev. 2.1 |
The configure operation raises an InvalidConfiguration exception

when a configuration error occurs that prevents any property
configuration on the conponent.

This operation raises Partial Configuration exception when sone
configuration properties were successful and some configuration
properties were not successful
@ oseui d 38A583FFC998 */
voi d configure (

in Properties configProperties

)

rai ses (lnvalidConfiguration, Partial Configuration);

/* The purpose of this operation is to allow a conmponent to be
queried to retrieve its properties.

If the configProperties are zero size then, the query operation
returns all conponent properties. |f the configProperties are
not zero size, then the query operation returns only those
id/value pairs specified in the configProperties. An component's
SPD profile indicates the valid query types. Valid properties for
the query operation are at a mininmumthe configure readwite and
readonly properties, and allocation properties that have an
action value of "external" as referenced in the conponent's SPD

This operation raises the CF UnknownProperties exception when one
or nore properties being requested are not known by the
conponent .
@ oseui d 38A583FFC99A */
void query (

i nout Properties configProperties

rai ses (UnknownProperties);
1

/* The Donmi nManager interface APl is for the control and configuration
of the radio domain

The Donmai nManager interface can be logically grouped into three

cat egori es:

Human Conputer Interface (HCl), Registration, and Core Framework (CF)
adm ni stration.

1. The HCl operations are used to configure the domain, get the
domain's capabilities (Devices, Services, and Applications), and
initiate mai ntenance functions. Host operations are performed by a
client user interface capable of interfacing to the Donai n Manager

2. The registration operations are used to register / unregister

Devi ceManagers, Devi ceManager's Devi ces, DeviceManager's Services, and
Applications at startup or during run-tine for dynam c device, service,
and application extraction and insertion

3. The adm nistration operations are used to access the interfaces of
regi stered Devi ceManagers, Fil eManagers, and Loggers of the donain.

C-19

MSRC-5000SCA
Appendix C
rev. 2.1 |

The Donai nManager restores ApplicationFactories after startup for
applications that were previously installed by the Domai nManager
instal |l Application operation. The Domai nManager adds the restored
ApplicationFactories to the Domai nManager's applicati onFactories
attribute.

A Domai nManager inplenentation may log to O to many Log references
(uses ports). The Logs utilized by the Domai nManager i nplenentation
shall be defined in the Donmain Manager Configuration Descriptor (DMVD).
See Appendix D for further description of the DVD file.

Once a service specified in the DVD is successfully registered with the
Domai nManager (via registerDeviceManager or registerService
operations), the Domai nManager shall begin to use the service (e.g.
Log). */

i nterface Domai nManager : PropertySet {
/* This exception indicates an application installation has not
conpl eted correctly. */

exception ApplicationlnstallationError {

1
/* This type defines an unbounded sequence of Applications. */
typedef sequence <Application> ApplicationSequence;

/* This type defines an unbounded sequence of application
factories. */

typedef sequence <ApplicationFactory> Applicati onFactorySequence;
/* This type defines an unbounded sequence of device managers. */
typedef sequence <Devi ceManager > Devi ceManager Sequence;

/* This exception indicates the application IDis invalid. */

exception Invalidldentifier {

s

/* The Devi ceManager Not Regi stered exception indicates the
regi stering Device's DeviceManager is not registered in the
Domai nManager. A Device's DeviceManager has to be registered
prior to a Device registration to the Donmi nManager. */

exception Devi ceManager Not Regi st ered {
I

/* The donmi nManagerProfile attribute contains the

Domai nManager's profile. The readonly domai nManagerProfil e
attribute contains either a profile element with a file reference
to the Dommi nManager's (DVD) profile or the XML for the

Domai nManager's (DVD) profile. Files referenced within the

C-20

MSRC-5000SCA
Appendix C
rev. 2.1 |

profile will have to be obtained fromthe Donmai nManager's
Fi | eManager. */

readonly attribute string domai nManager Profil e;

/* The devi ceManagers attribute is read-only containing a
sequence of registered DeviceManagers in the domain. The

Domai nManager contains a list of registered Devi ceManagers t hat
have regi stered with the Donmai nManager. The Donmai nManager wites
an ADM NI STRATI VE_EVENT | og to a Donmai nManager's Log, when the
devi ceManagers attribute is obtained by a client. */

readonly attribute Devi ceManager Sequence devi ceManagers;

/* The applications attribute is read-only containing a sequence
of instantiated Applications in the domain. The Donai nManager
contains a list of Applications that have been instantiated. The
Domai nManager wites an ADM NI STRATI VE_EVENT log record to a
Domai nManager's Log, when the applications attribute is obtained
by a client. */

readonly attribute ApplicationSequence applications;

/* The readonly applicationFactories attribute contains a |ist
wi th one ApplicationFactory per application (SAD file and
associ ated files) successfully installed (i.e. no exception
rai sed). The Dommi nManager wites an ADM NI STRATI VE_EVENT | og
record to a Domai nManager's Log, when the applicationFactories
attribute is obtained by a client. */

readonly attribute
Appl i cati onFact or ySequence applicati onFactori es;

/* The fileMgr attribute is read only containing the nmounted
FileSystens in the donmain. The Donai nManager wites an

ADM NI STRATI VE_EVENT | og record to a Domai nManager's Log, when
the fileMgr attribute is obtained by a client. */

readonly attribute Fil eManager fil eMyr;

/* The regi sterDevice operation verifies that the input
parameters, registeringDevice and registeredDeviceMgr, are not
nil CORBA component references.

The regi sterDevice operation adds the registeringDevice and the
regi steringDevice's attributes (e.g., identifier
softwareProfile's allocation properties, etc.) to the

Domai nManager, if it does not already exist.

The regi sterDevi ce operation associ ates the input

regi steringDevice with the input registeredDeviceMyr in the
Domai nManager when the input registeredDeviceMyr is a valid
regi stered Devi ceManager in the Donmai nManager

The regi sterDevi ce operation, upon successful device
registration, wites an ADM Nl STRATI VE_EVENT | og record to a
Domai nManager's Log, to indicate that the device has successfully
regi stered with the Domai nManager

C-21

M SRC-5000SCA
Appendix C
rev. 2.1 |
Upon unsuccessful device registration, the regi sterDevice
operation wites a FAILURE ALARM I og record to a Donai nManager's
Log, when the InvalidProfile exception is raised to indicate that
the registeringDevice has an invalid profile.

Upon unsuccessful device registration, the regi sterDevice
operation logs a Failure_ Alarmevent with Domai nManager's Logger
for the Devi ceManager Not Regi stered exception to indicate that the
device that cannot be registered to the Device due to the

Devi ceManager is not registered with the Domai nManager.

Upon unsuccessful device registration, the regi sterDevice
operation wites a FAILURE ALARM |l og record to a Donmai nManager's
Log, indicating that the device could not register because the
Devi ceManager is not registered with the Domai nManager.

Upon unsuccessful device registration, the regi sterDevice
operation wites a FAILURE ALARM I og record to a Donmai nManager's
Log, because of an invalid reference input paraneter.

The regi sterDevice operation raises the CF InvalidProfile
excepti on when:

1. The Device's SPD file and the SPD s referenced files do not
exi st or cannot be processed due to the file not being conpliant
with XML syntax, or

2. The Device's SPD does not reference allocation properties.

The regi sterDevice operation rai ses a Devi ceManager Not Regi st er ed
exception when the input registeredDeviceMygr (not nil reference)
is not registered with the Domai nManager.

The regi sterDevice operation raises the CF InvalidObjectReference
exception when input paraneters regi steringDevice or
regi st eredDevi ceMgr contains an invalid reference.
@ oseui d 364B4CF92EDO */
voi d regi sterDevice (

in Device registeringDevice,

i n Devi ceManager regi steredDevi ceMyr

)

rai ses (lnvalidObjectReference, InvalidProfile,

Devi ceManager Not Regi st ered) ;

/* This operation is used to register a DeviceManager, its
Device(s), and its Services. Software profiles can al so be
obt ai ned fromthe Devi ceManager's Fil eSystem

The regi st er Devi ceManager operation verifies that the input
parameter, deviceMgr, is a not a nil CORBA conmponent reference.

The regi st er Devi ceManager operation adds the input deviceMyr's
regi steredServi ces and each registeredService's nanes to the
Domai nManager. The regi sterDevi ceManager operation associ ates
the input deviceMgr's with the input deviceMyr's

C-22

M SRC-5000SCA
Appendix C
rev. 2.1 |
regi steredServices in the Domai nManager in order to support the
unr egi st er Devi ceManager operati on.

The regi st er Devi ceManager operation performs the docunented
connections as specified in the connections el ement of the
deviceMgr's DCD file. For connections established for a Log, the
regi st er Devi ceManager operation creates a unique producer log ID
for each | og producer. The registerDevi ceManager operation

i nvoke the PropertySet configure operation on each |og producer
in order to set its unique PRODUCER LOG ID. If the

Devi ceManager's DCD descri bes a connection for a service that has
not been registered with the Donai nManager, the

regi st er Devi ceManager operation establishes any pending
connection when the service registers with the Domai nManager by
t he regi st er Devi ceManager operation

The regi st er Devi ceManager operation adds the input deviceMygr to
t he Donai nManager's devi ceManagers attribute, if it does not
al ready exi st.

The regi st er Devi ceManager operation adds the input deviceMyr's
regi st eredDevi ces and each regi steredDevice's attributes (e.g.
identifier, softwareProfile's allocation properties, etc.) to the
Domai nManager

The regi st er Devi ceManager operation associ ates the input
deviceMgr with the input deviceMygr's regi steredDevices in the
Domai nManager in order to support the unregisterDevi ceManager
operation.

The regi st er Devi ceManager operation obtains all the Software
profiles fromthe registering DeviceManager's Fil eSystens.

The regi st er Devi ceManager operation nounts the Devi ceManager's
FileSystemto the Domai nManager's Fil eManager. The nounted
Fil eSystem nane shall have the format, "/ Domai nName/ Host Nane",
where Domai nNanme is the nane of the domain and HostName is the
i nput deviceMyr's label attribute

The regi st er Devi ceManager operation, upon unsuccessful
Devi ceManager registration, wites a FAILURE ALARM | og record to
a Donmai nManager's Log.

The regi st er Devi ceManager operation raises the CF
I nval i dObj ect Ref erence exception when the input paraneter
devi ceMgr contains an invalid reference to a Devi ceManager
interface.
@ oseui d 364B4D632938 */
voi d regi sterDevi ceManager (

i n Devi ceManager devi ceMyr

rai ses (lnvalidObjectReference, InvalidProfile);

/* This operation is used to unregister a Devi ceManager object
fromthe Domai nManager's Donain Profile.

C-23

MSRC-5000SCA
Appendix C
rev. 2.1 |

The unregi st er Devi ceManager operation unregisters a Devi ceManager
conponent from the Donmi nManager.

The unregi st er Devi ceManager operation rel eases (client-side CORBA
rel ease) all device(s) and service(s) associated with the
Devi ceManager that is being unregistered.

The unregi st er Devi ceManager operation shall unnmount all
Devi ceManager's FileSystens fromits File Manager.

The unregi st er Devi ceManager operation, upon the successful
unregi stration of a DeviceManager, wites an ADM NI STRATI VE_EVENT
log record to a Donai nManager's Log.

The unregi st er Devi ceManager operation, upon unsuccessf ul
unregi stration of a DeviceManager, wites a FAILURE_ALARM | og
record to a Domai nManager's Log.

The unregi st er Devi ceManager operation raises the CF
I nval i dObj ect Ref erence when the input paraneter Devi ceManager
contains an invalid reference to a DeviceManager interface.
@ oseui d 364B4EABL5E0 */
voi d unregi st er Devi ceManager (

i n Devi ceManager devi ceMyr

)

rai ses (IlnvalidObjectReference);

/* The unregi sterDevice operation renoves a device entry fromthe
Domai nManager's Domain Profile..

The unregi sterDevice operation rel eases (client-side CORBA
rel ease) the unregistering Device fromthe Donmai nManager.

The unregi st erDevi ce operation, upon the successful
unregi stration of a Device, wites an ADM Nl STRATI VE_EVENT | og
record to a Domai nManager's Log.

The unregi st erDevi ce operation, upon unsuccessful unregistration
of a Device, wites a FAILURE ALARM | og record to a
Domai nManager' s Log.

The unregi sterDevice operation raises the CF
I nval i dObj ect Ref erence exception when the input paraneter
contains an invalid reference to a Device interface.
@ oseui d 364B4ECBDECO */
voi d unregi sterDevice (
i n Device unregisteringDevice

)

rai ses (IlnvalidObject Reference);

/* This operation is used to register new application software in
t he Donai nManager's Donain Profile. An installer application
typically invokes this operation when it has conpleted the
installation of a new Application into the domain.

C-24

MSRC-5000SCA
Appendix C

rev. 2.1 |
The profileFileNane is the absolute path of the profile fil enane.

The install Application operation verifies the application's SAD
file exists in the Domai nManager's Fil eManager and all the files
the application is dependent on are al so resident.

The install Application operation wites an ADM N STRATI VE_EVENT
|l og Record to a Donmai nManager's Log, upon successful Application
installation.

The install Application operation raises the
ApplicationlnstallationError exception when the installation of
the Application file(s) was not successfully conpleted.

The install Application operation raises the CF InvalidFil eNane
exception when the input SAD file or any referenced file nane
does not exist in the file systemas defined in the absolute path
of the input profileFileName. The install Application operation

|l ogs a FAILURE_ ALARM I og record to a Donai nManger's Log when the
I nval i dFi | eNane exception occurs and the | ogged nessage shall be
"install Application:: invalid file is xxx", where "xxx" is the

i nput or referenced file name is bad.

The install Application operation raises the CF InvalidProfile
exception when the input SAD file or any referenced file is not
conpliant with XML DIDs defined in Appendix D or referenced
property definitions are mssing. The installApplication
operation s logs a FAILURE ALRAM | og record ot a Donmai nManager's
Log when the CF InvalidProfile exception occurs and the | ogged
nmessage shall be "install Application:: invalid Profile is yyy,"
where "yyy" is and the input or referenced file nanme that is bad
along with the element or position within the profile that is
bad.
@ oseui d 3896FOD83588 */
void install Application (

in string profileFil eNane

)

rai ses (lnvalidProfile, InvalidFileNane,

ApplicationlnstallationError);

/* This operation is used to uninstall an application in the
Domai nManager's Domain Profile. The CF Installer typically
i nvokes this operation when removing an application fromthe
radi o domai n.

The uninstal |l Application operation renoves all files associated
with the Application.

The uninstal |l Application operation nmakes the ApplicationFactory
unavail able fromthe Donai nManager (i.e. its services no |onger
provi ded for the Application).

The uninstal |l Application operation, upon successful uninstall of
an Application, wites an ADM N STRATI VE_EVENT | og record to a

C-25

M SRC-5000SCA
Appendix C
rev. 2.1 |
Domai nManager' s Log.

The uninstal |l Application operation, upon unsuccessful uninstal
of an Application, wites a FAILURE ALARM |l og record to a
Domai nManager' s Log.

The uninstal |l Application operation raises the Invalidldentifier
exception when the ApplicationlD is invalid.
@ oseui d 3896F13747C8 */
voi d uninstall Application (
in string applicationlD
)

raises (lnvalidldentifier);

/* This operation is used to register a service for a specific
Devi ceManager with the Domai nManager

The regi sterService operation verifies the input

regi steringService and regi steredDeviceMygr are valid object

ref erences . The regi sterService operation verifies the input
regi st eredDevi ceMgr has been previously registered with the
Domai nManager. The regi sterService operation adds the

regi steringService and the regi steringService's nane to the
Domai nManager. However, if the nane of the registering service
is not a unique nane for that type of service (i.e. it is a
duplicate nane of an already registered service of the sanme type
of service), then the new service is not be registered by the
Domai nManager . The regi sterServi ce operati on associ ates the input
regi steringService with the input regi steredDeviceMyr in the
Domai nManager when the input registeredDeviceMyr is a valid

regi stered Devi ceManager in the Domai nManager. The

regi sterService operation, upon successful service registration
est abl i sh any pendi ng connection requests for the

regi steringService. For connections established for a Log, the
regi sterService operation creates a uni que producer log ID for
each | og producer. The registerService operation invokes the
PropertySet configure operation onceon each | og producer in order
to set its unique PRODUCER LOG ID (see section 3.1.3.3.5.5.1.2
for details).

The regi sterService operation, upon successful service
registration, wites a log record to a Donmai nManager's Log, with
the log level set to ADM NI STRATI VE_EVENT.

The regi sterService operation, upon unsuccessful service
registration, wites a log record to a Domai nManager's Log, with
the log level set to FAI LURE_ALARM

Thi s operation does not return a val ue.

The regi sterService operation raises a Devi ceManager Not Regi st ered
exception when the input registeredDeviceMyr (not nil reference)
is not registered with the Domai nManager. The registerService
operation raises the CF InvalidnjectReference excepti on when

i nput paraneters regi steringService or registeredDevi ceMyr
contains an invalid reference.

C-26

M SRC-5000SCA
Appendix C
rev. 2.1 |
@ oseui d 3B33926D032F */
voi d regi sterService (
in Qbject registeringService,
i n Devi ceManager regi steredDevi ceMyr,
in string nane

rai ses (lnvalidObjectReference, InvalidProfile,
Devi ceManager Not Regi st ered) ;

/* This operation is used to renove a service entry fromthe
Domai nManager for a specific Devi ceManager

The unregi sterService operation removes a service entry fromthe
Domai nManager. The unregi sterService operation rel eases (client-
side CORBA rel ease) the unregi steringService fromthe

Domai nManager. The unregi sterService operation, upon the
successful unregistration of a Service, wites a log record to a
Domai nManager's Log, with the log level set to

ADM NI STRATI VE_EVENT. The unregi sterService operation, upon
unsuccessful unregistration of a Service, wite a log record to a
Domai nManager's Log, with the log | evel set to FAI LURE ALARM

Thi s operation does not return a val ue.

The unregi sterService operation raises the CF
I nval i dObj ect Ref erence exception when the input paraneter
contains an invalid reference to a Service interface.
@ oseui d 3B3392750114 */
voi d unregi sterService (
in Object unregisteringService,
in string nane
)

rai ses (InvalidObject Reference);
i

/* The ApplicationFactory interface class provides an interface to
request the creation of a specific type (e.g., SINCGARS, LGS,
Havequi ck, etc.) of Application in the domain. The ApplicationFactory
interface class is designed using the Factory Design Pattern. The
Software Profile determines the type of Application that is created by
the ApplicationFactory. */

interface ApplicationFactory ({
/* This exception is rai sed when the paraneter
Devi ceAssi gnnent Sequence contains one (1) or nore invalid
Appl i cation conponent-to-device assignment(s). */

exception CreateApplicati onRequestError {

Devi ceAssi gnment Sequence i nval i dAssi gnment s;
H

/* This exception is raised when the create request is valid but
the Application is unsuccessfully instantiated due to interna
processing errors. */

C-27

MSRC-5000SCA
Appendix C
rev. 2.1 |

exception CreateApplicationError {
StringSequence errorMessages;
1

/* The invalidlnitConfiguration exception is raised when the
i nput initConfiguration paraneter is invalid. */

exception InvalidlnitConfiguration {
Properties invalidProperties;
i

/* The nane attribute contains the nane of the type of
Application that can be instantiated by the ApplicationFactory
(e.g., SINCGARS, LGOS, Havequi ck, DAMA25, etc.). */

readonly attribute string nane;

/* This attribute contains the application software profile that
this factory uses when creating an application. The string value
contains either a profile element with a file reference to the
SAD profile file or the actual xml for the SAD profile. Files
referenced within the profile will have to be obtained froma

Fil eManager. The ApplicationFactory will have to be queried for
profile informati on for Conponent files that are referenced by an
IDinstead of file nane. */

readonly attribute string softwareProfile;

/* This operation is used to create an Application within the
system donai n.

The create operation provides a client interface to request the
creation of an Application on client requested device(s) or the
creation of an Application in which the ApplicationFactory
determ nes the necessary device(s) required for instantiation of
t he Application.

If the input paraneter CF DeviceAssi gnment sSequence length is
zero (0), the ApplicationFactory allocates the devices for the
creation of the Application as specified in the Software
Profile's software assenbly descriptor (SAD). Each application
wi Il have a SAD.

An Application can be conprised of one or nobre conmponents (e.g.
Resources, Devices, etc.). The SAD contai ns Software Package
Descriptors (SPDs) for each Application conponent. The SPD
specifies the Device inplenentation criteria for |oading
dependenci es (processor kind, etc.) and processing capacities
(e.g., nenory, process) for an application conmponent. The create
operation uses the SAD SPD i npl ementation el ement to | ocate

candi dat e devi ces capabl e of |oading and executing Application
conponent s.

I f deviceAssignments (not zero |ength) are provided, the

ApplicationFactory verifies each device assignment, for the
speci fi ed conmponent, against the conponent's SPD i npl ement ati on

C-28

MSRC-5000SCA
Appendix C

rev. 2.1 |
el enent .

The create operation allocates (Device::allocateCapacity)
conponent capacity requirenments agai nst candi date devices to

det ermi ne which candi date devices satisfy all SPD inpl enmentation
criteria requirements and SAD partitioning requirements (e.g,
conponents Host Col | ocation, etc.). The create operation only
uses devi ces that have been granted successful capacity

al l ocations for |oading and executing Application conmponents, or
used for data processing. The actual devices chosen will reflect
changes in capacity based upon conponent capacity requirenents
all ocated to them which nay al so cause state changes for the
Devi ces.

The create operation |oads the Application conponents (including
all of the Application-dependent conponents) to the chosen
devi ce(s).

The create operation executes the Application conponents
(including all of the Application-dependent components) using the
entry points dictated in the SPD s inplenentation code el ement.
par agraph The create operation uses the conponent's SPD

i mpl enentati on code's stacksize and priority el ements, when
specified,for the execute options paraneters. Paraneters passed
to entry points will be in the formof a nam ng context paraneter
with an I D of "NAM NG CONTEXT" and string value of (/ Domai nNane
/ NodeNane / [other context sequences]) /
Conponent Narre_Uni quel denti fi er, when the conponent object
reference is to be retrieved froma Nam ng Service as indicated
by the SAD." The unique identifier is deternm ned by the

i mpl enent ati on, unique to each node. The create operation uses
this namng string to form conponent names that need to be
retrieved from Nam ng Service. Wen the NAM NG CONEXT par anet er
is used, the create operation forms a namng service |ORwith the
format of an ID of "NAM NG SERVICE I OR' and string val ue of the
CORBA Naming Service IOR that the ApplicationFactory is using.
Due to the dynamics of bind and resolve to Naning Service, the
create operation should provide sufficient attenpts to retrieve
conponent object references from Nam ng Service prior to
generating an exception

In the nanming paraneter string, each "slash" (/) represents a
separate namng context. A naming context is nade up of ID and
kind pair, which is indicated by "id.kind" in the naning
parameter string. The naming context kind is optional and when
not specified a null string will be used.

The NodeNane naming context |ID value is the |abel of the

Devi ceManager in which the conponent was | oaded and going to be
execut ed.

The Conponent Nane nami ng context |ID value is the conponent

i nstanti ation findconponent findby nam ngservi ce name el enent
value in the software assenbly descriptor (SAD).

The create operation passes the conponentinstantiati on el enent

C-29

M SRC-5000SCA
Appendix C
rev. 2.1 |
"execparant properties that have val ues as paraneters to execute

operation. The create operation passes "execparan' paraneters
val ues as string val ues.

The create operation, initializes Resources first, then
est abl i shes connections for Resources, and finally configures the
Resour ces.

The create operation will only configure the application's
assenbl ycontrol | er conmponent. The create operation initializes an
Application conmponent provided the conponent inplenents the
LifeCycle interface

The create operation configures an application's

assenbl ycontrol | er conponent provided the assenbl ycontroller has
configure readwite or witeonly properties with values. The
create operation wuses the union of the input initConfiguration
properties of the create operation and the assenblycontroller's
conponentinstantiation witeable "configure" properties that have
val ues. The input initConfiguration paraneter have precedences
over the assenblycontroller's witeable "configure" property

val ues.

The create operation, when creating a conponent froma CF
Resour ceFactory, passes the componentinstantiation
conponent resour sef actoryref el ement "factoryparant properties
that have values as qualifiers paraneters to the referenced
Resour ceFact ory conponent's creat eResource operation

The create operation interconnects Application conmponents'
(Resources' or Devices') ports in accordance with the SAD. The
create operation obtain Ports in accordance with the SAD via
Resource get Port operation.The create operation uses the SAD
connectinterface elenent id attribute as the unique identifier
for a specific connection when provided. The create operation
creates a connection I D when no SAD connectinterface el enent
attribute id is specified for a connection. The create operation
obtai ns a Resource in accordance with the SAD via the CORBA

Nam ng Service, ResourceFactory, or a stringified IOR The
Resour ceFactory can be obtai ned by using the CORBA Nami ng Service
or a stringified IOR as stated in the SAD

The create operation passes, with invocation of each

Resour ceFactory createResource operation, the ResourceFactory
configuration properties associated with that Resource as
dictated by the SAD

The dependencies to Logger and Fil eManager will show up as
connections in the SAD

If the Application is successfully created, the create operaiton
returns an Application conponent reference for the created
Application. A sequence of created Application references can be
obt ai ned usi ng the Domai nManager: : get Appl i cations operation

C-30

M SRC-5000SCA
Appendix C
rev. 2.1 |
The create operation, upon successful Application creation

writes an ADM NI STRATI VE_EVENT | og record to a Domai nManager's
Log.

The create operation, upon unsuccessful Application creation
wites a FAILURE_ALARM | og record to a Domai nManager's Log.

The create operation raises the CreateApplicati onRequest Error
exception when the paranmeter CF Devi ceAssi gnment Sequence cont ai ns
one (1) or nmore invalid Application conponent to device

assi gnnent (s).

The create operation raises the CreateApplicati onError exception
when the create request is valid but the Application can not be
successfully instantiated due to internal processing error(s).

The create operation raises the InvalidlnitConfiguration
exception when the input initConfiguration paraneter is invalid.
The InvalidlnitConfiguration invalidPropertiesl identifies the
property that is invalid.
@ oseui d 38B7D97BCF98 */
Application create (
in string nane,
in Properties initConfiguration,
i n Devi ceAssi gnnent Sequence devi ceAssi gnment s
)
rai ses (CreateApplicationError,
Creat eAppl i cati onRequest Error
I nval i dl ni t Configuration);

}s

/* This interface provides the getPort operation for those objects that
provi de ports. */

i nterface Port Supplier {
/* This exception is raised if an undefined port is requested. */

exception UnknownPort {

}

/* The getPort operation provides a mechanismto obtain a

speci fic consuner or producer Port. A PortSupplier nmay contain
zero-to-many consunmer and producer port conponents. The exact
nunber is specified in the component's Software Profile SCD
(section Error! Reference source not found.). These Ports can be
ei ther push or pull types. Miltiple input and/or output ports
provide flexibility for PortSuppliers that nmust manage varyi ng
priority levels and categories of incom ng and outgoi ng nmessages,
provide multi-threaded nessage handling, or other special nessage
processi ng.

The get Port operations returns the object reference to the naned
port as stated in the conmponent's SCD. The getPort operation
returns the CORBA object reference that is associated with the

i nput port nane.

C-31

MSRC-5000SCA
Appendix C
rev. 2.1 |

The get Port operation rai ses an UnknownPort exception if the port
name i s invalid.
@ oseui d 3B336BB80213 */
hj ect getPort (
in string nane
)

rai ses (UnknownPort);
b

/* The Resource interface provides a comon APl for the control and
configuration of a software conponent. The Resource interface inherits
fromthe LifeCycle, PropertySet, Testablebject, and Port Supplier

i nterfaces.

The inherited LifeCycle, PropertySet, Testablelbject, and Port Supplier
interface operations are docunented in their respective sections of
thi s docunent.

The Resource interface may al so be inherited by other application
interfaces as described in the Software Profile's Software Conponent
Descriptor (SCD) file. */

interface Resource : LifeCycle, TestableCbject, PropertySet,
Port Supplier {
/* This exception indicates a Start error has occurred for the
Resource. An error nessage is given explainng the start error.
*/

exception StartError {
string nsg;
1

/* This exception indicates a Stop error has occurred for the
Resource. An error message is given explainng the stop error. */

exception StopError ({
string mnseg;
1

/* The start operation puts the Resource in an operating
condi tion.

The start operation raises the StartError exception if an error
occurs while starting the resource.
@ oseui d 38BEE2457548 */
void start ()
raises (StartError);

/* The stop operation disables all current operations and put the
Resource in a non-operating condition. Subsequent configure,
query, and start operations are not inhibited by the stop
operation.

The stop operation raises the StopError exception if an error

C-32

M SRC-5000SCA
Appendix C
rev. 2.1 |
occurs while stopping the resource.
@ oseui d 38BEE2457549 */
void stop ()
rai ses (StopError);

}s

/* A Device is a type of Resource within the domain and has the
requirenents as stated in the Resource interface. This interface
defines additional capabilities and attributes for any |ogical Device
in the domain. A logical Device is a functional abstraction for a set
(e.g., zero or nore) of hardware devices and provides the follow ng
attributes and operations:

1. Software Profile Attribute - This SPD XM_ profil e defines the

| ogi cal Device capabilities (data/conmand uses and provi des ports,
configure and query properties, capacity properties, status properties,
etc.), which could be a subset of the hardware device's capabilities.

2. State Managenent Attributes - The usage, operational, and

adm ni strative states constitutes the overall state for a |ogical
Device. Status properties nmay contain nore detailed informtion about
aspects of the states.

3. Capacity Operations - In order to use a device, certain capacities
(e.g., nenmory, performance, etc.) must be obtained fromthe Device.
The capacity properties will vary anbng devices and are described in
the Software Profile. A device may have nultiple allocatable
capacities, each having its own uni que capacity nodel.

The follow ng behavior is in addition to the LifeCycle rel ease(j ect
operati on behavi or.

The rel easeObj ect operation calls the rel ease(j ect operation on all of
the Device's aggregated Devices (i.e., those Devices that are contained
wi thin the AggregateDevice' sdevices attribute).

The rel easeObj ect operation transitions the Device's adm nState to
SHUTTI NG DOMNst at e, when the Device's admi nState i s UNLOCKED.

The rel easeObj ect operation causes the Device to be unavailable (i.e.
rel eased fromthe CORBA environnent, and process terninated on the OS
when applicable), when the Device's adninState transitions to LOCKED,
meani ng its aggregated Devices have been renoved and the Device's
usageState is | DLE.

The rel easeObj ect operation shall cause the renoval of its Device from
the Device's conpositeDevice. The releaseCbject operation unregisters
its Device fromits DeviceManager. */

interface Device : Resource {
/* This exception indicates that the device is not capable of the
behavi or being attenpted due to the state the Device is in. An
exanpl e of such behavior is allocateCapacity.
exception InvalidState {string nsg;}; */

C-33

MSRC-5000SCA
Appendix C
rev. 2.1 |

exception InvalidState {
string nsg;
1

/* The InvalidCapacity exception returns the capacities that are
not valid for this device.exception InvalidCapacity. */

exception InvalidCapacity {
/* The invalid capacities sent to the all ocateCapacity
operation. */
Properties capacities;
/* The message indicates the reason for the invalid
capacity. */
string mseg;

}s

/* This is a CORBA IDL enuneration type that defines a Device's
adm nistrative states. The administrative state indicates the
perm ssion to use or prohibition against using the Device. */

enum Adni nType {
UNLOCKED,
LOCKED,
SHUTTI NG_DOMN

}s

/* This is a CORBA IDL enuneration type that defines a Device's
operational states. The operational state indicates whether or
not the object is functioning. */

enum Qper ati onal Type {
ENABLED,
DI SABLED

}s

/* This is a CORBA IDL enuneration type that defines the Devices
usage states. This state indicates whether or not a Device is:
| DLE - not in use

ACTI VE - in use, with capacity remaining for allocation or
BUSY - in use, with no capacity remaining for allocation
*/
enum UsageType {

| DLE

ACTI VE,

BUSY

s

/* The readonly conpositeDevice attribute contains the object
reference of the AggregateDevice with which this Device is
associ ated or a nil CORBA object reference if no association
exists. */

readonly attribute AggregateDevice conpositeDevice;

/* The readonly usageState attribute contains the Device's usage
state (IDLE, ACTIVE, or BUSY). UsageState indicates whether or

C-34

M SRC-5000SCA
Appendix C
rev. 2.1 |
not a device is actively in use at a specific instant, and if so,

whet her or not it has spare capacity for allocation at that
instant. */

readonly attribute UsageType usageSt at e;

/* The administrative state indicates the pernission to use or
prohi bition against using the device. The adnmi nState attribute
contains the device's adnmin state value. The adninState
attribute only allows the setting of LOCKED and UNLOCKED val ues,
where "LOCKED' is only effective when the admi nState attribute
val ue is UNLOCKED, and "UNLOCKED' is only effective when the

adm nState attribute value is LOCKED or SHUTTING DOMN. Il ega
state transitions conmands are ignored. The adm nState, upon being
conmmanded to be LOCKED, transitions fromthe UNLOCKED to the
SHUTTI NG DOMN state and set the adnminState to LOCKED for its
entire aggregation of Devices (if it has any). The adninState
then transitions to the LOCKED state when the Device's usageState
is IDLE and its entire aggregation of Devices are LOCKED. */

attribute Adnmi nType admi nStat e;

/* The readonly | abel attribute contains the Device's label. The
| abel attribute is the neani ngful nane given to a Device. The
attribute could convey location information within the system
(e.g., audiol, seriall, etc.). */

readonly attribute string | abel

/* The softwareProfile attribute is the XML description for this
| ogi cal Device. The readonly softwareProfile attribute contains
either a profile DID element with a file reference to the SPD
profile file or the XML for the SPD profile. Files referenced
within the softwareProfile are obtained via the Fil eManager. */

readonly attribute string softwareProfile;
/* The readonly identifier attribute contains the unique
identifier for a device instance. */

readonly attribute string identifier

/* The readonly operational State attribute contains the device's
operational state (ENABLED or DI SABLED). The operational state
i ndi cates whet her or not the device is functioning. */

readonly attribute Qperational Type operational State;

/* This operation provides the nechanismto request and all ocate
capacity fromthe Device.

The al | ocateCapacity operation reduces the capacities of the
Devi ce based upon the capacities requested, when the adm nState
is UNLOCKED, operational State is ENABLED, and usageState is not
BUSY.

The al | ocateCapacity operation sets the Device's usageState
attribute to BUSY, when the Device determines that it is not
possible to allocate any further capacity. The all ocateCapacity
operation sets the usageState attribute to ACTIVE, when capacity
i s being used and any capacity is still available for allocation

C-35

MSRC-5000SCA
Appendix C
rev. 2.1 |

The al | ocateCapacity operation returns true, if the capacity has
been al |l ocated, or false if not allocated.

The al |l ocateCapacity operation raises the InvalidCapacity
exception, when the capacities are invalid or the capacity val ues
are the wong type or ID

The al | ocateCapacity operation raises the InvalidState exception
when the Device's adminState is not UNLOCKED or operational State
i s DI SABLED.
@ oseui d 38B7EFDO77B0 */
bool ean al | ocateCapacity (

in Properties capacities

)

rai ses (lnvalidCapacity, InvalidState);

/* This operation provides the nechanismto return capacities
back to the Device, nmaking them avail able to other users.

The deal | ocat eCapacity operation adjusts the capacities of the
Devi ce based upon the input capacities paraneter.

The deal | ocat eCapacity operation sets the usageState attribute to
ACTI VE when, after adjusting capacities, any of the Device's
capacities are still being used.

The deal | ocat eCapacity operation sets the usageState attribute to
| DLE when, after adjusting capacities, none of the Device's
capacities are still being used.

The deal | ocat eCapacity operation sets the adm nState attribute to
LOCKED as specified in adnmnState attribute

Thi s operation does not return any val ue.

The deal | ocat eCapacity operation raises the InvalidCapacity
exception, when the capacity IDis invalid or the capacity val ue
is the wong type. The InvalidCapacity exception will state the
reason for the exception.

The deal | ocat eCapacity operation raises the InvalidState
exception, when the Device's adm nState is LOCKED or
operational State i s DI SABLED
@ oseui d 38B7EFFDDD48 */
voi d deal | ocat eCapacity (

in Properties capacities

)

rai ses (lnvalidCapacity, InvalidState);
i

/* The Application provides the interface for the control,
configuration, and status of an instantiated application in the domain.
The Application interface inherits the IDL interface of CF Resource.

A created application instance may contain CF Resource comnmponents

C-36

M SRC-5000SCA
Appendix C
rev. 2.1 |
and/ or non- CORBA conponents.

The Application interface rel easehject operation provides the
interface to rel ease the conputing resources allocated during the
instantiation of the Application, and de-allocate the devices
associated with Application instance. An instance of an Application is
returned by the create operation of an instance of the

Appl i cati onFactory.

The Application delegates the inplenentation of the inherited Resource
operations (runTest, start, stop, configure, and query) to the
application's assenblycontroll er Resource. The Application propagates
exceptions raised by the application's assenblycontroller's
operations. The initialize operation is not propagated to Application
conponents or the assenblycontroller, and causes no action within an

Appl i cation.

rel easeObj ect Behavi or

For each Application component not created by a ResourceFactory, the
rel easeCbj ect operation releases the conmponent by utilizing the
Resources's rel easeObj ect operation. |f the conponent was created by a
ResourceFactory, the rel easeChj ect operation rel eases the conponent

by the ResourceFactory rel easeResource operation. The rel ease(j ect
operation shutdowns a ResourceFactory when no nore Resources are
managed by the ResourceFactory.

For each allocated device capabl e of operation execution, the
rel easeObj ect operation termnates all processes / tasks of the
Application's conponents utilizing the Device's term nate operation

For each allocated device capable of nenory function, the rel easebject
operation de-allocates the menory associated with Application's
conponent instances utilizing the Device's unload operation

The rel easeObj ect operation deallocates the Devices that are associ ated
with the Application being rel eased, based on the Application's
Sof tware Profile.

The actual devices deall ocated (Device::deallocateCapacity) will

refl ect changes in capacity based upon conponent capacity requirenents
deal | ocated fromthem which may al so cause state changes for the

Devi ces.

The Application releases all client component references to the
Application components.

The rel easeObj ect operation disconnects Ports fromother Ports that
have been connected based upon the software profile.

For components (e.g., Resource, ResourceFactory) that are registered
wi th Naming Service, the rel easeObject operation unregisters those
conponents from Nami ng Service

The rel easeObj ect operation for an application disconnects Ports first,

then rel ease the Resources and ResourceFactories, then call the
term nate operation, and lastly call the unload operation on the

C-37

devi ces.

MSRC-5000SCA

Appendix C
rev. 2.1 |

The rel easeObj ect operation, upon successful Application rel ease,
writes an ADM NI STRATI VE_EVENT | og record to a Domai nManager's Log.

The rel easeObj ect operation, upon unsuccessful Application rel ease,

wites a FAILURE ALARM | og record to a Domai nManager's Log.

interface Application : Resource {

*/

/* The Conponent Processl dType defines a type for associating a
conponent with its process ID. This type can be used to retrieve

a process ID for a specific conponent. */

struct Conponent Processl dType {

/* The conmponentID is a ID of a conponent that corresponds

to the application's SAD conponentinstantiation's ID

attri bute value. */

string conponent| D

/* The process ID of the executable conponent.
unsi gned | ong processld;

}s

*/

/* The Conponent Processl dSequence type defines an unbounded

sequence of conponents' process IDs. */

t ypedef

sequence <Conponent Processl dType> Conponent Processl dSequence;

/* The Conponent El ement Type defines a type for associating a
conponent with an elenment (e.g., nam ng context, inplenentation

1D). */

struct Conponent El enent Type {

/* The conmponentID is a ID of a conponent that corresponds

to the application's SAD conponentinstantiation's ID

attri bute value. */
string conponent| D

/* The elenent ID that is associated w th conponent

string el ementl D

s

ID. */

/* The Conponent El ement Sequence defi nes an unbounded sequence of

conponents with an associ ated el enent. */

typedef sequence <Conponent El enent Type> Conponent El enment Sequence,;

/* The conponent Nam ngContexts attribute contains the list of
conponents' Nam ng Service Context within the Application for

t hose conmponents using CORBA Nami ng Service. */

readonly attribute
Conponent El enent Sequence conponent Nam ngCont ext s;

/* The conponent Processlds attribute contains the Iist of

conponents' process IDs within the Application for conmponents

that are executing on a device. */

C-38

M SRC-5000SCA
Appendix C
rev. 2.1 |

readonly attribute
Conponent Processl dSequence conponent Processl ds;
/* The conponent Devi ces attribute shall contains the Iist of
conponents' device assignnents within the application. Each
conponent (componentinstantiation elenment in the Application's
SAD) is associated with a device. */

readonly attribute Devi ceAssi gnnent Sequence conponent Devi ces;

/* The component | npl enentations attribute contains the |ist of
conponents' SPD inplenmentation IDs within the Application for

t hose conponents created. */

readonly attribute

Conponent El enent Sequence conponent | npl enent ati ons;

/* This attribute is the XM_ profile information for the
application. The string value contains either a profile el ement
with a file reference to the SAD profile file or the actual xn
for the SAD profile. Files referenced within a profile will have
to be obtained froma Fil eManager. The Application will have to
be queried for profile information for Conponent files that are
referenced by an ID instead of a file name. */

readonly attribute string profile;

/* This name attribute contains the name of the created
Application. The ApplicationFactory interface's create operation
nane paramneter provides the name content. */

readonly attribute string nane;

}s

/* This interface extends the Device interface by addi ng software
| oadi ng and unl oadi ng behavior to a Device. */

i nterface Loadabl eDevice : Device {
/* This type defines the type of load to be perforned. The | oad
types are in accordance with Appendix D SPD code el ement. */

enum LoadType {
DRI VER,
KERNEL__MODULE
SHARED LI BRARY
EXECUTABLE

s

/* This exception indicates that the device is unable to | oad
that type of file, as identified by the |oadKind paraneter. */

exception InvalidLoadKind {

1

/* This operation provides the nechani smfor | oading software on
a specific device. The |oaded software may be subsequently
executed on the Device, if the Device is an Execut abl eDevi ce.

The | oad operation loads a file on the specified device based
upon the input |oadKind and fil eNane paranmeters using the input

C-39

MSRC-5000SCA
Appendix C

rev. 2.1 |
Fil eSystem paranmeter to retrieve the file.

The | oad operation supports the |oad types as stated in the
Device's software profile LoadType all ocation properties.

The | oad operation keeps track of the nunber of times a file has
been successful |l y | oaded.

Thi s operation does not return any val ue.

The | oad operation raises the InvalidState excepti on when the
Device's adninState is not UNLOCKED or operational State is
DI SABLED.

The | oad operation raises the InvalidLoadKi nd exception when the
i nput | oadKi nd paraneter is not supported.

The | oad operation raises the CF InvalidFil eNane excepti on when
the file designated by the input filenanme paraneter cannot be
f ound.
@ oseui d 3A5DAED301AE */
void | oad (
in FileSystemfs,
in string fil eNane,
in LoadType | oadKi nd

raises (lnvalidState, InvalidLoadKind, InvalidFileNane);

/* This operation provides the nechanismto unl oad software that
is currently | oaded.

The unl oad operation decrenments the |load count for the input
filenane paranmeter by one. The unl oad operation unloads the
application software on the device based on the input fil eNane
parameter, when the file's |oad count equals zero.

Thi s operation does not return a val ue.

The unl oad operation raises the InvalidState excepti on when the
Device's adninState is LOCKED or its operational State is
DI SABLED.

The unl oad operation raises the CF InvalidFileNane exception when
the file designated by the input filenanme paraneter cannot be
f ound.
@ oseui d 3A5DAED301B2 */
voi d unl oad (
in string fil eNane

)

raises (lnvalidState, InvalidFileNane);
b

/* This interface extends the Loadabl eDevice interface by adding
execute and terni nate behavior to a Device. */

C-40

M SRC-5000SCA
Appendix C
rev. 2.1 |
i nterface Executabl eDevice : Loadabl eDevice {

/* This exception indicates that a process, as identified by the
processl| D paraneter, does not exist on this device. */

exception InvalidProcess {

}s

/* This exception indicates that a function, as identified by the
i nput name paraneter, hasn't been | oaded on this device. */

exception InvalidFunction {

s

/* This type defines a process nunmber within the system Process
nunber is unique to the Processor operating systemthat created
t he process. */

t ypedef unsigned | ong Processl D Type;

/* The InvalidParaneters exception indicates the input paraneters
are invalid on the execute operation. This exception is raised
when there are invalid execute paraneters. Each paraneter's ID
and val ue nust be a valid string type. The invalidParns is a |ist
of invalid paraneters specified in the execute operation. */

exception InvalidParaneters {
/* The invalidParns is a list of invalid paraneters
specified in the execute or executeProcess operation. Each
parameter's ID and val ue must be a string type. */
Properties invalidParns;

}s

/* The InvalidOptions exception indicates the i nput options are
invalid on the execute operation. The invalidOpts is a list of
invalid options specified in the execute operation. */

exception InvalidOptions {
/* The invalidParns is a list of invalid paraneters
specified in the execute or executeProcess operation. Each
parameter's ID and val ue must be a string type. */
Properties invalidOpts;

s

/* The STACK SIZE IDis the identifier for the Executabl eDevice's
execute options paraneter. The value for a stack size is an
unsi gned long. */

const string STACK SIZE = "STACK SI ZE";

/* The PRRORITY IDis the identifier for the Executabl eDevice's
execute options paraneters. The value for a priority is an
unsi gned long. */

const string PRIORITY_ID = "PRI ORI TY"

/* The term nate operation provides the nmechanismfor term nating
the execution of a process/thread on a specific device that was
started up with the execute operation

C-41

MSRC-5000SCA
Appendix C
rev. 2.1 |

The term nate operation term nates the execution of the
process/thread designated by the processld i nput paraneter on the
Devi ce.

Thi s operation does not return a val ue.

The terminate operation raises the InvalidState exception when
the Device's adnminState is LOCKED or operational State is
DI SABLED.

The termi nate operation raises the InvalidProcess exception when
the processld does not exist for the Device.
@ oseui d 3A5DAECL016D */
void term nate (
in Processl D Type processld

rai ses (lnvalidProcess, InvalidState);

/* This operation provides the nechanismfor starting up and
executing a software process/thread on a devi ce.

The execute operation executes the function or file identified by
t he i nput name paraneter using the input paraneters and options
paranmeters. \Wiether the input name paraneter is a function or a
file name is device-inplenmentation-specific. The execute operation
converts the input parameters (id/value string pairs) paraneter
to the standard argv of the POSI X exec family of functions, where
argv(0) is the function name. The execute operation maps the

i nput paraneters paranmeter to argv starting at index 1 as
follows, argv (1) maps to input paraneters (0) id and argv (2)
maps to input paraneters (0) value and so forth. The execute
operation passes argv through the operating system "execute"
function.

The execute operation input options paraneters are STACK SIZE I D
and PRIORITY_ID. The execute operation uses these options, when
specified, to set the operating system s process/thread stack
size and priority, for the executable imge of the given input
name paraneter.

The execute operation returns a unique processlD for the process
that it created or a processID of mnus 1 (-1) when a process is
not created.

The execute operation raises the InvalidState exception when the
Device's adninState is not UNLOCKED or operational State is
DI SABLED.

The execute operation raises the InvalidFunction exception when
the function indicated by the input nane paraneter does not exist
for the Device.

The execute operation raises the CF InvalidFil eName exception

when the file nane indicated by the input nanme paraneter does not
exi st for the Device.

C-42

MSRC-5000SCA
Appendix C
rev. 2.1 |

The execute operation raises the InvalidParaneters exception when
the input paraneters paraneter itemI|D and value are not string

types.

The execute operation raises the InvalidOptions exception when
the i nput options paraneter does not conmply with STACK SIZE ID
and PRIORITY_ID options.
@ oseui d 3A5DAECLO016F */
Processl D Type execute (

in string nane,

in Properties options,

in Properties paraneters

rai ses (lnvalidState, InvalidFunction, InvalidParaneters,
I nval i dOpti ons, InvalidFil eNane);

s

/* The Devi ceManager interface is used to nanage a set of [ogical
Devi ces and services. The interface for a Devi ceManager is based upon
its attributes, which are:

1. Device Configuration Profile - a mapping of physical device
| ocations to neani ngful |abels (e.g., audiol, seriall, etc.), along
with the Devices and services to be depl oyed.

2. File System - the Fil eSystem associated with this DeviceManager.

3. Device Manager ldentifier - the instance-unique identifier for this
Devi ceManager .

4. Device Manager Label - the meaningful name given to this
Devi ceManager .

5. Registered Devices - a list of Devices that have registered with
t hi s Devi ceManager.

6. Registered Services - a list of Services that have registered with
t hi s Devi ceManager.

The Devi ceManager upon start up registers itself with a Donmai nManager .
This requirenment allows the systemto be devel oped where at a mi ni num
only the Domai nManager's conponent reference needs to be known. A
Devi ceManager uses the Devi ceManager's devi ceConfigurationProfile
attribute for determning:

1. How to obtain the Domai nManager comnponent reference, whether Nam ng
Service is being used or a Domai nManager stringified |OR is being used,

2. Services to be deployed for this Devi ceManager (for exanple,
log(s)).

3. Devices to be created for this DeviceManager (when the DCD
depl oyondevi ce el ement is not specified then the DCD

C-43

M SRC-5000SCA
Appendix C
rev. 2.1 |
conponentinstantiation elenment is deployed on the same hardware device
as the Devi ceManager),

4. Devices to be deployed on (executing on) another Device,
5. Devices to be aggregated to another Device,
6. Mount point nanes for Fil eSystens,

7. The DCD's id attribute for the DeviceManager's identifier attribute
val ue, and

8. The DCD s nanme attribute for the DeviceManager's |abel attribute
val ue.

The Devi ceManager creates Fil eSystem conmponents inplenenting the
FileSysteminterface for each OGS file system If nultiple FileSystens
are to be created, the Devi ceManager nounts created FileSystens to a
Fi | eManager conponent (wi dened to a FileSystemthrough the FileSys
attribute). Each mounted Fil eSystem name rmust be unique within the
Devi ceManager .

The Devi ceManager supplies execute operation paraneters (IDs and format
val ues) for a Device consisting of:

a. DeviceManager IOR - The IDis "DEVICE-_MER IOR" and the value is a
string that is the DeviceManager stringified I OR

b. Profile Nane - The ID is "PROFILE NAME" and the value is a CORBA
string that is the full nounted file systemfile path nane.

c. Device ldentifier - The IDis "DEVICE ID" and the value is a string
that corresponds to the DCD conponentinstantiation id attribute.

d. Device Label - The IDis "DEVICE LABEL" and the value is a string
that corresponds to the DCD conponentinstantiation usage elenment. This
paranmeter is only used when the DCD conponentinstantiati on usageel enent
is specified.

e. Composite Device IOR - The IDis "Conposite DEVICE |IOR' and the
value is a string that is an AggregateDevice stringified |OR This
paranmeter is only used when the DCD conponentinstantiation elenent is a
conposite part of another conponentinstantiation elenent.

f. The execute ("execparam') properties as specified in the DCD for a
conponentinstantiation el ement. The Devi ceManager shall pass the
conponentinstantiation el ement "execparam' properties that have val ues
as paraneters.

The Devi ceManager passes "execparam! paraneters' |Ds and val ues as
string val ues. The Devi ceManager uses the conponentinstantiation
element's SPD i npl enmentation code's stacksize and priority el ements,
when specified, for the execute options paraneters.

The Devi ceManager initializes and configures |ogical Devices that are
started by the DeviceManager after they have registered with the

C-44

MSRC-5000SCA
Appendix C

rev. 2.1 |
Devi ceManager .

The Devi ceManager configures a DCD s conponentinstantiati on el enent
provi ded the conponentinstantiation el enent has "configure" readwite
or witeonly properties with val ues.

If a Service is deployed by the Devi ceManager, the Devi ceManager
suppl i es execute operation paraneters (IDs and format val ues)
consi sting of:

a. DeviceManager IOR - The IDis "DEVICE MGR I OR'" and the value is a
string that is the DeviceManager stringified I OR

b. Service Nane - The IDis "SERVICE_NAME" and the value is a string
that corresponds to the DCD conponentinstantiati on usagenane el ement.
*/

i nterface Devi ceManager : PropertySet, PortSupplier {
/* This structure provides the object reference and nanme of
services that have registered with the Devi ceManager. */

struct ServiceType {
hj ect servicebj ect;
string serviceNane;

}

/* This type provides an unbounded sequence of ServiceType
structures for services that have registered with the
Devi ceManager. */

typedef sequence <ServiceType> Servi ceSequence;

/* The readonly deviceConfigurationProfile attribute contains the
Devi ceManager's profile. The readonly devi ceConfigurationProfile
attribute contains either a profile element with a file reference
to the Devi ceManager's device configuration (DCD) profile or the
XML for the DeviceManager's device configuration (DCD) profile.
Files referenced within the profile are obtained froma
FileSystem */

readonly attribute string deviceConfigurationProfile;

/* The readonly fileSys attribute contains the Fil eSystem
associated with this DeviceManager or a nil CORBA object
reference if no FileSystemis associated with this Devi ceManager
*/

readonly attribute FileSystemfil eSys;
/* The readonly identifier attribute contains the instance-unique
identifier for a DeviceManager. */

readonly attribute string identifier

/* The readonly | abel attribute contains the Devi ceManager's
| abel . The label attribute is the neaningful nane given to a
Devi ceManager. */

readonly attribute string | abel

C-45

MSRC-5000SCA
Appendix C
rev. 2.1 |
/* The readonly registeredDevices attribute contains a list of
Devi ces that have registered with this DeviceManager or a
sequence |length of zero if no Devices have registered with the
Devi ceManager. */

readonly attribute DeviceSequence registeredDevices;

/* The readonly registeredServices attribute shall contain a |ist
of Services that have registered with this DeviceManager or a
sequence length of zero if no Services have registered with the
Devi ceManager. */

readonly attribute ServiceSequence regi steredServices;

/* This operation provides the nechanismto register a Device
wi th a Devi ceManager.

The regi sterDevice operation adds the input registeringDevice to
t he Devi ceManager's regi steredDevices attri bute when the input
regi steringDevi ce does not already exist in the regi steredDevices
attribute. The registeringDevice is ignored when duplicated.

The regi sterDevice operation registers the registeringDevice with
t he Donai nManager when the Devi ceManager has al ready registered
to the Domai nManager and the regi steringDevice has been
successfully added to the Devi ceManager's registeredDevices
attribute.

The regi sterDevice operation wites a log record with the |og
| evel set to FAILURE_ALARM upon unsuccessful registration of a
Device to the Devi ceManager's regi steredDevi ces.

Thi s operation does not return any val ue.

The regi sterDevice operation raises the CF InvalidObjectReference
when the input registeredDevice is a nil CORBA object reference.
@ oseui d 3ACFA4F90122 */
voi d regi sterDevice (

in Device registeringDevice

rai ses (IlnvalidObject Reference);
/* This operation unregisters a Device froma Devi ceManager.

The unregi sterDevice operation renmoves the input registeredDevice
fromthe Devi ceManager's regi steredDevices attribute. The

unr egi st erDevi ce operation unregisters the input registeredDevice
from the Domai nManager when the input registeredDevice is

regi stered with the Devi ceManager and the Devi ceManager is not
shutting down.

The unregi sterDevice operation wites a log record with the | og

| evel set to FAILURE ALARM when it cannot successfully renove a
regi steredDevi ce fromthe Devi ceManager's regi st eredDevi ces.

C-46

MSRC-5000SCA
Appendix C

rev. 2.1 |
Thi s operation does not return any val ue.

The unregi sterDevice operationraises the CF
I nval i dObj ect Ref erence when the input registeredDevice is a nil
CORBA obj ect reference or does not exist in the DeviceManager's
regi st eredDevi ces attribute.
@ oseui d 3ACFA5040000 */
voi d unregi sterDevice (

i n Device registeredDevice

rai ses (IlnvalidObject Reference);

/* This operation provides the nechanismto terninate a
Devi ceManager .

The shut down operation unregi sters the DeviceManager fromthe
Domai nManager .

The shut down operation perforns rel easeCbject on all of the
Devi ceManager' s regi stered Devi ces (Devi ceManager's
regi steredDevi ces attribute).

The shutdown operation causes the Devi ceManager to be unavail abl e
(i.e. released fromthe CORBA environment and its process

term nated on the OS), when all of the DeviceManager's registered
Devi ces are unregi stered fromthe Devi ceManager.

Thi s operation does not return any val ue.

Thi s operation does not raise any exceptions.
@ oseui d 3ACFA50E0302 */
voi d shutdown ();

/* This operation provides the mechanismto register a Service
wi th a Devi ceManager.

The regi sterService operation adds the input registeringService
to the Devi ceManager's regi steredServices attribute when the

i nput registeringService does not already exist in the

regi steredServices attribute. The registeringService is ignored
when dupl i cat ed.

The regi sterService operation registers the regi steringService

wi th the Domai nManager when the Devi ceManager has al ready

regi stered to the Domai nManager and the registeringService has
been successfully added to the Devi ceManager's regi steredServices
attri bute.

The regi sterService operation wites a log record with the |og
| evel set to FAILURE_ALARM upon unsuccessful registration of a
Service to the Devi ceManager's regi st eredServices.

Thi s operation does not return any val ue.

The regi sterService operation raises the CF
I nval i dCbj ect Ref erence exception when the input registeredService

C-47

M SRC-5000SCA
Appendix C
rev. 2.1 |
is a nil CORBA object reference.
@ oseui d 3B338F910156 */
voi d regi sterService (
in Object registeringService,
in string nane

rai ses (IlnvalidObjectReference);
/* This operation unregisters a Service from a Devi ceManager

The unregi sterService operation renmoves the input

regi steredService fromthe Devi ceManager's regi steredServices
attribute. The unregisterService operation unregisters the input
regi steredService fromthe Domai nManager when the input

regi steredService is registered with the Devi ceManager and the
Devi ceManager is not in the shutting down state.

The unregi sterService operation wites a log record with the |og
| evel set to FAILURE_ALARM when it cannot successfully renove a
regi steredService fromthe DeviceManager's regi steredServices.

Thi s operation does not return any val ue.

The unregi sterService operation raises the CF
I nval i dObj ect Ref erence when the input registeredService is a ni
CORBA obj ect reference or does not exist in the DeviceManager's
regi steredServices attribute.
@ oseui d 3B338F950007 */
voi d unregi sterService (

in Object registeredService,

in string nane

rai ses (IlnvalidObjectReference);

/* This operation returns the SPD i nplenentation ID that the
Devi ceManager interface used to create a conponent.

The get Conponent | npl ementati onld operation returns the SPD

i npl enentation ID attribute that matches the SPD i npl enent ati on
whi ch was used to create the conponent as identified by the inpu
conponent I nstantiation ID paraneter. The

get Conponent | npl enentati onld operation returns an enpty string
when the conponentlinstantiation is invalid.

Thi s operation does not raise any exceptions.
@ oseui d 3B45B6E301FB */
string get Conponent| npl ementationld (

in string conponentlnstantiationld

)

C-48

MSRC-5000SCA
Appendix C
rev. 2.1 |

C-49

MSRC-5000SCA
Appendix C
rev. 2.1 |

C.2 PortTypesMODULE.

This CORBA Module contains a set of unbundled CORBA sequence types based on CORBA types
not in the CF CORBA Module. The Basic Sequence Types IDL was generated from the Rational
Rose model, version 98i.

/1 ## Mbdul e: Port Types

/| ## Subsyst em

Core_CSCl _I DL_I npl ement ati on_Conponents: : CF_I DL_I npl enent ati on_Conponent

/1 ## Source file:

/ sof t war e/ conponent s/ Radi oCORBA/ nmi ts_sdr/ sdr_code. ss/ gl bi ck_jtrs.wk/PortTypes
Lidl

/| ##begi n modul e. cm preserve=no

/1 9X% Y0 Y% o

/| ##end nodul e. cm

/| ##begi n nmodul e. cp preserve=no
/| ##end nodul e. cp

#i f ndef Port Types_idl
#def i ne Port Types_idl

/| ##begi n nodul e. addi ti onal | ncl udes preserve=no
/| ##end nodul e. addi ti onal | ncl udes

/| ##begi n nmodul e. i ncl udes preserve=yes
/| ##end nodul e. i ncl udes

nodul e Port Types
{

/| ##begi n nodul e. decl arati ons preserve=no
/| ##end nodul e. decl arati ons

/| ##begi n nodul e. addi ti onal Decl arati ons preserve=yes

| [##end nodul e. addi ti onal Decl arati ons

/1 ## Wstri ngSequence Docunentati on:

/1 This type is a CORBA unbounded sequence of Wstrings.
/| ## Category: Port_Types_I|DL_Conponents

t ypedef sequence<wstring> Wstri ngSequence;

/| ## Bool eanSequence Docunent ati on

/1 This type is a CORBA unbounded sequence of bool eans.
/| ## Category: Port_Types_ |DL_Conponents

t ypedef sequence<bool ean> Bool eanSequence,;

C-50

/I ## Char Sequence Docunent ati on

/1 This type is a CORBA unbounded sequence of
/1 characters.

/1 ## Category: Port_Types_I|DL_Conponents

t ypedef sequence<char> Char Sequence;

/1 ## Doubl eSequence Docunent ati on

/1 This type is a CORBA unbounded sequence of
/| ## Category: Port_Types_ |DL_Conponents

t ypedef sequence<doubl e> Doubl eSequence;

/I ## LongDoubl eSequence Docunent ati on

/1 This type is a CORBA unbounded sequence of
/1 Doubl es.

/| ## Category: Port_Types_I|IDL_Conponents

t ypedef sequence<l| ong doubl e> LongDoubl eSequence;
/1 ## LongLongSequence Docunent ati on

/1 This type is a CORBA unbounded sequence of
/1 | ongl ongs.

/| ## Category: Port_Types | DL_Conponents

t ypedef sequence<l ong | ong> LongLongSequence;

/1 ## LongSequence Docunentati on

/1 This type is a CORBA unbounded sequence of
/| ## Category: Port_Types_I|IDL_Conponents

t ypedef sequence<l| ong> LongSequence;

/1 ## Short Sequence Docunent ati on

/1 This type is a CORBA unbounded sequence of
/1 ## Category: Port_Types | DL_Conponents

t ypedef sequence<short> Short Sequence;

/1 ## U ongLongSequence Docunentati on

/1 This type is a CORBA unbounded sequence of unsigned

/1 [on | ongs.
/| ## Category: Port_Types_I|IDL_Conponents

doubl es.

| ong

| ongs.

shorts.

t ypedef sequence<unsi gned |ong | ong> U ongLongSequence;

/1 ## U ongSequence Docunent ati on

/1 This type is a CORBA unbounded sequence of unsigned

C-51

MSRC-5000SCA
Appendix C
rev. 2.1 |

b

/1 | ongs.
/| ## Category: Port_Types_ |DL_Conponents

t ypedef sequence<unsi gned | ong> U ongSequence;

/1 ## Ushort Sequence Docunentati on

/1 This type is a CORBA unbounded sequence of unsigned

/1 shorts.
/1 ## Category: Port_Types_I|DL_Conponents

t ypedef sequence<unsi gned short> Ushort Sequence;

/1 ## Whar Sequence Docunent ati on

/1 This type is a CORBA unbounded sequence of

/1 wchar act er s.
/1 ## Category: Port_Types_ |DL_Conponents

t ypedef sequence<wchar> Whar Sequence;

/1 ## Fl oat Sequence Docunentation

/1 This type is a CORBA unbounded sequence of floats.

/1 ## Category: Port_Types_I|IDL_Conponents

t ypedef sequence<fl oat> Fl oat Sequence;

#endi f

C-52

MSRC-5000SCA
Appendix C
rev. 2.1 |

M SRC-5000SCA
Appendix C
rev. 2.1

C.3 PushPorts MODULE.

This CORBA Module contains the PushPorts interfaces where each interface is based upon one
CORBA basic type. The PushPorts CORBA module contains a set of data interfaces that extend
the CF::Port interface. Each interface is apush consumer type where a producer uses that interface
to push data to a consumer. Each interface contains one “one-way” operation that is based upon a
standard CORBA type such as octet, short, and long. The operation parameters are a sequence of a
basic CORBA type parameter along with a control parameter. The types for these parameters are
defined in PortTypes CORBA module. The requirements for these interfaces are implementation-
dependent and the control information is port interface dependent. The PushPorts CORBA module
can be implemented either asa CORBA TIE or non-TIE approach. The benefit of the TIE
approach isit allows a push consumer servant to implement more than one of these interfaces,
which is alowed by the Software Profile. This standard set of interfaces can be used by application
developersfor defining their CF::Port interfaces. The module diagram for PushPortsis shown in
Figure C-3.

Push

L]
Ports
O//]

UlongSeqConsumer

O

UshortSeqConsumer

DoubleSeqConsumer Q
O W charSeq
Consumer

AnyConsumer

O
O BooleanSeq

StringSeqConsumer Consumer
Q CharSeq
OctetSeqConsumer Q C onsumer
LongLong
O
O O O O O wsing
LongDouble Seq
LongSeq FloatSeqConsumer g ShortSeqConsumer ~ UlongLong
Consumer SeqConsumer SeqC onsumer

Figure C-3. PushPorts

The following is the PushPorts IDL generated from the Rational Rose model, version 98i.
/1 ## Modul e: PushPorts

C-53

MSRC-5000SCA
Appendix C
rev. 2.1 |

/| ## Subsyst em
Core_CSCI _IDL_I npl ementation_Conponents::CF_|IDL_I npl enentati on_Conponent
/1 ## Source file:
/ sof t war e/ conponent s/ Radi oCORBA/ nmit s_sdr/ sdr_code. ss/ gl bi ck_jtrs.wk/PushPorts
Lidl
/1 ## Docunent ati on:

/1 Thi s CORBA Modul e contains the Push Port interfaces
/1 where each interface is based upon one CORBA basic
/1 type.

/| ##begi n modul e. cm preserve=no
/1 9X% Y0 Y% %o
/| ##end nodul e. cm

/| ##begi n modul e. cp preserve=no
/| ##end nodul e. cp

#i f ndef PushPorts_id
#defi ne PushPorts idl

/| ##begi n nodul e. addi ti onal | ncl udes preserve=no
/| ##end nodul e. addi ti onal | ncl udes

/| ##begi n nmodul e. i ncl udes preserve=yes
/I ##end nodul e. i ncl udes

#include "CF.idl"
#i nclude "Port Types.idl"

nodul e PushPorts

{

/| ##begi n nodul e. decl arati ons preserve=no
/| ##end nodul e. decl arati ons

/| ##begi n nodul e. addi ti onal Decl arati ons preserve=yes
/| ##end nodul e. addi ti onal Decl ar ati ons

/1 ## Cct et SeqConsuner Docunent ati on

/1 This interface is inplenented by push consuners
/1 that process an octet sequence pushed to them by
/1 producers.

/| ## Category: Push_Port_Consumer | DL_Desi gn_Conponent s

i nterface CctetSeqConsuner {
/| ##begi n COct et SeqConsuner.initial Decl arations preserve=yes
/| ##end Cct et SeqConsuner.initial Decl arati ons

/] Attributes

/1 Rel ati onshi ps

C-54

MSRC-5000SCA
Appendix C

rev. 2.1 |
/] Associ ations

/1 Operations

/1 ## Operation: processCctet Msg
/| ## Docunent ati on:

/1 This operation is used to push a sequence of Cctets
/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (PushConsuner) object. The nmessage bei ng pushed has
/1 data and control information (classification,

/1 source, destination, priority, etc.).

oneway void processCctetMsg(in CF::CctetSequence nmsg, in CF:.:Properties
options);

/| ##begi n Cct et SeqConsuner. addi ti onal Decl arati ons preserve=yes
/| ##end Cct et SeqConsuner . addi ti onal Decl arati ons

b

/1 ## Whar SeqConsunmer Docunent ati on:

/1 This interface is inplenmented by push consuners
/1 that process a w de character sequence pushed to
/1 t hem by producers.

/1 ## Category: Push_Port Consuner | DL_Desi gn_Conponents

i nterface Whar SeqConsuner {
/| ##begi n Whar SeqConsumer . initial Decl arati ons preserve=yes
/I ##end Wthar SeqConsuner.ini ti al Decl arati ons

I/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processWhar Mg
[I ## Docunent ati on:

/1 This operation is used to push a sequence of Whars
/1 infornation to be received or transmtted through
/1 the RADI O from one object to the next "destination"
/1 (PushSour ce) object. The nessage bei ng pushed has
/1 data and control information (classification,

/1 source, destination, priority, etc.).

oneway void processWharMg(in PortTypes::Whar Sequence nsg, in
CF:: Properties options);

C-55

MSRC-5000SCA
Appendix C
rev. 2.1 |

/I ##begi n Wehar SeqConsuner. addi ti onal Decl arati ons preserve=yes
/| ##end Wehar SeqConsun®er . addi ti onal Decl arati ons

1

/1 ## LongSeqConsuner Docunentati on

/1 This interface is inplenented by push consuners
/1 that process a | ong sequence pushed to them by
/1 producers.

/1 ## Category: Push_Port_Consumner | DL_Desi gn_Conponent s

i nterface LongSeqConsuner {
/| ##begi n LongSeqConsuner.initial Decl arations preserve=yes
/| ##end LongSeqConsurmer.initi al Decl arati ons

[/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processLongMsg
/| ## Document ati on

/1 This operation is used to push a sequence of Longs
/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (PushSour ce) object. The nessage bei ng pushed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

oneway void processLongMsg(in Port Types::LongSequence nsg, in
CF.: Properties options);

/| ##begi n LongSeqConsuner . addi ti onal Decl arati ons preserve=yes
/I ##end LongSeqConsuner. addi ti onal Decl arati ons

1

/1 ## Short SeqConsuner Docunent ati on

/1 This interface is inplenented by push consuners
/1 that process a short sequence pushed to them by
/1 producers.

/| ## Category: Push_Port_Consumer | DL_Desi gn_Conponent s

i nterface Short SeqConsuner {
/| ##begi n Short SeqConsuner.initial Decl arati ons preserve=yes
/| ##end Short SeqConsuner.initial Decl arati ons

/|l Attributes

C-56

MSRC-5000SCA
Appendix C
rev. 2.1 |

/1 Rel ati onshi ps
/1 Associ ati ons
/1 Operations

/1 ## Operation: processShort Msg
/| ## Docunent ati on:

/1 This operation is used to push a sequence of Shorts
/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (PushSour ce) object. The nessage bei ng pushed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

oneway void processShortMsg(in PortTypes:: Short Sequence nsg, in
CF:: Properties options);

/| ##begi n Short SeqConsuner. addi ti onal Decl arati ons preserve=yes
/| ##end Short SeqConsuner . addi ti onal Decl arati ons

H

/1 ## LongLongSeqConsuner Docunentati on

/1 This interface is inplenmented by push consuners
/1 that process a CORBA |long | ong sequence pushed to
/1 t hem by producers.

/1 ## Category: Push_Port_ Consuner | DL_Desi gn_Conponents

i nterface LongLongSeqConsuner {
/| ##begi n LongLongSeqConsuner.initial Decl arati ons preserve=yes
/| ##end LonglLongSeqConsuner.initi al Decl arati ons

/] Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processLonglLongMsg
/1 ## Docunmentation

/1 This operation is used to push a sequence of Long
/1 Longs infornation to be received or transmtted
/1 t hrough the RADI O from one object to the next

/1 "destination" (PushSource) object. The nmessage

/1 bei ng pushed has data and control infornmation

C-57

M SRC-5000SCA
Appendix C
rev. 2.1 |
/1 (classification, source, destination, priority,
/1 etc.).
oneway voi d processLongLongMsg(in Port Types::LongLongSequence nsg, in
CF:: Properties options);

/| ##begi n LongLongSeqConsuner. addi ti onal Decl arati ons preserve=yes
/1 ##end LongLongSeqConsuner . addi ti onal Decl arati ons

I

/1 ## U ongSeqConsuner Docunentation

/1 This interface is inplenmented by push consuners
/1 t hat process an unsigned | ong sequence pushed to
/1 t hem by producers.

/1 ## Category: Push_Port Consuner | DL_Desi gn_Conponents

i nterface U ongSeqConsuner {
/| ##begi n U ongSegConsumer.initial Decl arati ons preserve=yes
/| ##end U ongSeqConsuner.initi al Decl arati ons

/[l Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processU ongMsg
/1 ## Docunmentati on

/1 This operation is used to push a sequence of

/1 Unsi gned Longs information to be received or

/1 transmtted through the RADI O fromone object to
/1 the next "destination" (PushSource) object. The

/1 nmessage being pushed has data and contro

/1 i nformati on (classification, source, destination
/1 priority, etc.).

oneway voi d processU ongMsg(in PortTypes:: U ongSequence nsg, in
CF:: Properties options);

/I ##begi n U ongSeqConsuner. addi ti onal Decl arati ons preserve=yes
/| ##end U ongSeqConsuner . addi ti onal Decl arati ons

i

/1 ## U ongLongSeqConsuner Docunentati on

/1 This interface is inplenmented by push consuners

/1 t hat process an unsigned | ong | ong sequence pushed
/1 to them by producers.

C-58

/| ## Category: Push_Port_Consumer | DL_Desi gn_Conponent s

i nterface U ongLongSeqConsuner {

MSRC-5000SCA
Appendix C
rev. 2.1 |

/| ##begi n U ongLongSeqConsuner.initial Decl arations preserve=yes

/1 ##end U ongLongSeqConsurmer.initi al Decl arati ons

[/ Attributes

/1 Rel ati onshi ps

// Associ ations

/1 Operations

/1 ## Operation: processULongLongMsg
/1 ## Docunent ati on:

/1 This operation is used to push a sequence of

/1 Unsi gned Long Longs information to be received or
/1 transmtted through the RADI O fromone object to
/1 the next "destination" (PushSource) object. The
/1 nmessage being pushed has data and control

/1 i nformati on (classification, source, destination,
/1 priority, etc.).

oneway voi d processULongLongMsg(in PortTypes:: U ongLongSequence nsg, in

. Properties options);
/I ##begi n U ongLongSeqConsuner . addi ti onal Decl arati ons preserve=yes
/I ##end U ongLongSeqConsuner . addi ti onal Decl arati ons
1
/1 ## Fl oat SeqConsuner Docunent ati on:
/1 This interface is inplenented by push consuners
/1 that process a float sequence pushed to them by
/1 producers.

/| ## Category: Push_Port_Consumer | DL_Desi gn_Conponent s

i nterface Fl oat SeqConsuner {

/| ##begi n Fl oat SeqConsumer.initial Decl arati ons preserve=yes

/| ##end Fl oat SeqConsuner.initial Decl arati ons

[/l Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

C-59

MSRC-5000SCA
Appendix C
rev. 2.1 |

/1 ## Operation: processFl oat Msg
/| ## Docunent ati on:

/1 This operation is used to push a sequence of floats
/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (PushSour ce) object. The nessage bei ng pushed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

oneway voi d processFl oat Msg(in Port Types: : Fl oat Sequence nsg, in

:Properties options);
/| ##begi n Fl oat SeqConsuner. addi ti onal Decl arati ons preserve=yes
/| ##end Fl oat SeqConsuner . addi ti onal Decl arati ons

1

/1 ## Doubl eSeqConsuner Docunent ati on

/1 This interface is inplenmented by push consuners

/1 that process a doubl e sequence pushed to them by

/1 producers.

/| ## Category: Push_Port_Consumer | DL_Desi gn_Conponent s

i nterface Doubl eSeqConsuner {
/| ##begi n Doubl eSeqConsuner.initial Decl arati ons preserve=yes
/I ##end Doubl eSeqConsuner.initi al Decl arati ons

I/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processDoubl eMsg
/| ## Docunent ati on:

/1 This operation is used to push a sequence of

/1 Doubl es information to be received or transnmitted
/1 t hrough the RADI O from one object to the next

/1 "destination" (PushSource) object. The nmessage

/1 bei ng pushed has data and control infornation

/1 (classification, source, destination, priority,
/1 etc.).

oneway voi d processDoubl eMsg(in PortTypes:: Doubl eSequence nmsg, in

CF:: Properties options);

/ | ##begi n Doubl eSeqConsuner . addi ti onal Decl arati ons preserve=yes
/| ##end Doubl eSeqConsuner . addi ti onal Decl ar ati ons

C-60

MSRC-5000SCA

Appendix C
rev. 2.1 |
b
/1 ## LongDoubl eSeqConsunmer Docunent ati on
/1 This interface is inplenmented by push consuners
/1 that process a | ong doubl e sequence pushed to them
/1 by producers.

/1 ## Category: Push_Port_ Consuner | DL_Desi gn_Conponents

i nterface LongDoubl eSeqConsuner {
/| ##begi n LongDoubl eSeqConsumer.initi al Decl arati ons preserve=yes
/| ##end LongDoubl eSeqConsuner.initi al Decl arati ons

I/ Attributes

/1 Rel ationshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processLongDoubl eMsg
/1 ## Docunentation

/1 This operation is used to push a sequence of Long
/1 Doubl es information to be received or transmtted
/1 t hrough the RADI O from one object to the next

/1 "destination" (PushSource) object. The nessage

/1 bei ng pushed has data and control infornmation

/1 (classification, source, destination, priority,

/1 etc.).

oneway voi d processLongDoubl eMsg(in Port Types:: LongDoubl eSequence nmsg, in
CF:: Properties options);

/| ##begi n LongDoubl eSeqConsumer . addi ti onal Decl arati ons preserve=yes
/| ##end LongDoubl eSeqConsuner. addi ti onal Decl ar ati ons

H

/| ## Bool eanSeqConsumer Docunent ati on

/1 This interface is inplenmented by push consuners
/1 that process a bool ean sequence pushed to them by
/1 producers.

/1 ## Category: Push_Port_ Consuner | DL_Desi gn_Conponents

i nterface Bool eanSeqConsuner {
/| ##begi n Bool eanSeqConsuner.initial Decl arati ons preserve=yes
/| ##end Bool eanSeqConsuner.initi al Decl arati ons

/] Attributes

C-61

MSRC-5000SCA
Appendix C

rev. 2.1 |
/1 Rel ati onshi ps

/] Associ ations
/1 Operations

/1 ## Operation: processBool eanMsg
/1 ## Docunmentation

/1 This operation is used to push a sequence of

/1 Bool eans information to be received or transmtted
/1 t hrough the RADI O from one object to the next

/1 "destination" (PushSource) object. The nessage

/1 bei ng pushed has data and control infornmation

/1 (classification, source, destination, priority,

/1 etc.).

oneway voi d processBool eanMsg(in Port Types: : Bool eanSequence nsg, in
CF:: Properties options);

/| ##begi n Bool eanSeqConsuner . addi ti onal Decl arati ons preserve=yes
/ | ##end Bool eanSeqConsuner. addi ti onal Decl ar ati ons

i

/| ## Char SeqConsuner Docunentati on

/1 This interface is inplenmented by push consuners

/1 that process a character sequence pushed to them by
/1 producers.

/1 ## Category: Push_Port Consuner | DL_Desi gn_Conponents

i nterface Char SeqConsurer {
/| ##begi n Char SeqConsuner.initial Decl arati ons preserve=yes
/| ##end Char SeqConsurmer.initi al Decl arati ons

[/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processChar Msg
/1 ## Docunmentation

/1 This operation is used to push a sequence of Chars
/1 infornation to be received or transmtted through
/1 the RADI O from one object to the next "destination"
/1 (PushSour ce) object. The nessage bei ng pushed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

C-62

CF: :

s

I
/1
/1
I
I

oneway voi d processCharMsg(in Port Types:: Char Sequence nsg,
Properties options);

in

/| ##begi n Char SeqConsuner . addi ti onal Decl arati ons preserve=yes

/I ##end Char SeqConsuner . addi ti onal Decl arati ons

Ushort SeqConsumer Docunent ati on:
This interface is inplenented by push consuners
that process an unsi gned short sequence pushed to
t hem by producers.

Category: Push_Port_Consumer | DL_Desi gn_Conponent s

i nterface Ushort SeqConsuner {
/I ##begi n Ushort SeqConsuner.initial Decl arati ons preserve=yes

CF: :

}s

11
/1
/1
I
11

/I ##end Ushort SeqConsuner.initi al Decl arati ons

/|l Attributes

/1 Rel ati onshi ps

// Associ ations

/1 Operations

/1 ## Operation: processUshortMsg
/1 ## Docunent ati on:

/1 This operation is used to push a sequence of

/1 Unsi gned Shorts information to be received or

/1 transmitted through the RADI O fromone object to
/1 the next "destination" (PushSource) object. The

/1 nmessage bei ng pushed has data and control

/1 i nformati on (classification, source, destination,
/1 priority, etc.).

oneway void processUshortMsg(in PortTypes:: Ushort Sequence mnsg,

Properties options);

MSRC-5000SCA
Appendix C
rev. 2.1 |

in

/| ##begi n Ushort SeqConsuner . addi ti onal Decl arati ons preserve=yes

/| ##end Ushort SeqConsuner . addi ti onal Decl arati ons

StringSeqConsumer Documnentation:
This interface is inplenented by push consuners
that process a string sequence pushed to them by
producers.

Category: Push_Port_Consumer | DL_Desi gn_Conponent s

C-63

M SRC-5000SCA
Appendix C
rev. 2.1 |
i nterface StringSeqConsumner {

/| ##begi n StringSeqConsuner.initial Decl arati ons preserve=yes
/1 ##end StringSeqConsuner.initial Decl arations

/1 Attributes
/1 Rel ati onshi ps
/] Associ ations
/1 Operations

/1 ## Operation: processStringhsg
/| ## Docunent ati on:

/1 This operation is used to push a CORBA string

/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (PushSour ce) object. The nessage bei ng pushed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

oneway void processStringMsg(in CF::StringSequence nsg, in CF::Properties
options);

/| ##begi n St ri ngSeqConsuner. addi ti onal Decl arati ons preserve=yes
/| ##end StringSeqConsurmer. addi ti onal Decl arati ons

H

/1 ## WstringSeqConsumer Docunent ati on

/1 This interface is inplenmented by push consuners

/1 that process a w de string sequence pushed to them
/1 by producers.

/1 ## Category: Push_Port_ Consuner | DL_Desi gn_Conponents

i nterface Wstri ngSeqConsumer {
/| ##begi n Wstri ngSeqConsuner.initial Decl arati ons preserve=yes
/I ##end Wstri ngSeqConsuner.initial Decl arations

|/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processWtringMsg
/1 ## Docunentation

C-64

s

}s

I
/1
/1
I
I
11

voi d processWstringvsg(in PortTypes:: WtringSequence nsg,
options);

This operation is used to push a CORBA Wtring
infornation to be received or transmtted through
the RADI O from one object to the next "destination"
(PushSour ce) object. The nessage bei ng pushed has
data and control information (classification
source, destination, priority, etc.).

MSRC-5000SCA
Appendix C
rev. 2.1 |

in CF.:Properties

/| ##begi n Wstri ngSeqConsuner. addi ti onal Decl arati ons preserve=yes
/| ##end Wstri ngSeqConsuner. addi ti onal Decl arati ons

/1 ## AnyConsuner Docunentati on

/1
11
I

This interface is inplenented by push consuners
t hat process an any sequence pushed to them by
producers.

/| ## Category: Push_Port_Consumer | DL_Desi gn_Conponent s

i nterface AnyConsuner {
/| ##begi n AnyConsuner.initial Decl arati ons preserve=yes
/| ##end AnyConsuner.initi al Decl arati ons

s

[/l Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: processhMsg
/| ## Docunent ati on

I
I
/1
/1
11
I

oneway void processMsg(in CF::DataType mnsg,

This operation is used to push a CORBA any

i nformation to be received or transmitted through
the RADI O from one object to the next "destination"
(PushConsuner) object. The nessage bei ng pul | ed has
data and control information (classification
source, destination, priority, etc.).

/| ##begi n AnyConsuner . addi ti onal Decl ar ati ons preserve=yes
/| ##end AnyConsuner. addi ti onal Decl arati ons

C-65

in CF::Properties options);

MSRC-5000SCA
Appendix C

rev. 2.1 |
#endi f

C-66

MSRC-5000SCA
Appendix C
rev. 2.1 |

C.4 PullPorts MODULE.

This CORBA Module contains the PullPorts interfaces where each interface is based upon one
CORBA basic type. The PullPorts CORBA module contains a set of datainterfaces that extend the
CF::Port interface. Each interfaceisapull producer type where a consumer uses that interface to
pull datafrom a producer. Each interface contains one “two-way” operation which is based upon a
standard CORBA type such as octet, short, and long. The operation “out” parameters are a
sequence of abasic CORBA type parameter along with a control parameter. The types for these
parameters are defined in PortTypes CORBA module. The requirements for these interfaces are
implementation-dependent and the control information is port interface dependent. The PullPorts
CORBA module can be implemented either asa CORBA TIE or non-TIE approach. This standard
set of interfaces can be used by application developers for defining their CF::Port interfaces. The
module diagram for PullPortsis shown in Figure C-4.

Pull

Ports
O~ - O
StringSegProducer UlongLong
SeqProducer

WstringSegProducer

UshortSeqgProducer
. AnyProducer
FoatSegProducer Q
O WecharSegProducer
CharSeqProducer Q
O L ongL ongSegProducer
LongDouble Q
SegProducer
Q Q . O Q OctetSegProducer
BooleanSeq LongSegProducer UlongSeq DoubleSegProducer ShortSegProducer
Producer Producer

Figure C-4. PullPorts

The following is the PullPorts IDL generated from the Rational Rose model, version 98i.

/1 ## NModul e: Pull Ports
/| ## Subsystem
Core_CSCl _IDL_I npl ementation_Conponents::CF_|IDL_I npl enentati on_Conponent

C-67

|/ ## Source file:

MSRC-5000SCA
Appendix C
rev. 2.1 |

/ sof t war e/ conponent s/ Radi oCORBA/ nmits_sdr/sdr_code. ss/ gl bick_jtrs.wk/PullPorts

Lidl

/[## Document ati on:

1/ Thi s CORBA Modul e contains the Pul Port interfaces
/1 where each interface is based upon one CORBA basic
/1 type.

/| ##begi n nmodul e. cm preserve=no
/1 9X% Y0 YZ% o
/| ##end nodul e. cm

/| ##begi n nmodul e. cp preserve=no
/| ##end nodul e. cp

#i f ndef Pull Ports_idl
#define Pull Ports_idl

/| ##begi n nodul e. addi ti onal | ncl udes preserve=no
/I ##end nodul e. addi ti onal | ncl udes

/| ##begi n nmodul e. i ncl udes preserve=yes
/| ##end nodul e. i ncl udes

#include "CF.idl"
#i ncl ude "Port Types.idl"

nodul e Pul | Ports

{

/| ##begi n nodul e. decl arati ons preserve=no
/| ##end nodul e. decl arati ons

/| ##begi n nodul e. addi ti onal Decl arati ons preserve=yes
/I ##end nodul e. addi ti onal Decl ar ati ons

/1 ## Cct et SeqProducer Docunentation

/1 This interface is inplenmented by pull producers and
/1 used by a pull consuner that gets (pull) an octet
/1 sequence froma pull producer.

/| ## Category: Pull _Port_ Producer | DL_Conponents

i nterface CctetSeqProducer {
/| ##begi n Cct et SegProducer.initial Decl arati ons preserve=yes
/| ##end Cct et SeqPr oducer.initial Decl arati ons
/1 Attributes

/1 Rel ationshi ps

/] Associ ations

C-68

MSRC-5000SCA
Appendix C
rev. 2.1 |

/1 Operations

/1 ## Operation: getCctetMg
/1 ## Documnent ati on

/1 This operation is used to pull a sequence of Cctets
/1 infornation to be received or transmtted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nmessage being pul |l ed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

voi d get Cctet Msg(out CF::CctetSequence nmsg, out CF:.:Properties options);

/| ##begi n Cct et SegPr oducer. addi ti onal Decl arati ons preserve=yes
/| ##end Cct et SeqPr oducer . addi ti onal Decl arati ons

1

/1 ## Whar SegPr oducer Docunent ati on

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) a wide

/1 character sequence froma pull producer

/| ## Category: Pull _Port_Producer_I|DL_Conponents

i nterface Whar SeqProducer {
/| ##begi n Wehar SegProducer.initial Decl arati ons preserve=yes
/| ##end Wehar SeqPr oducer.ini ti al Decl arati ons

|/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: getWhar Mg
/| ## Docunent ati on:

/1 This operation is used to pull a sequence of Whars
/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nessage bei ng pul |l ed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

voi d get Whar Msg(out Port Types:: Whar Sequence nmsg, out CF::Properties
options);

/| ##begi n Whar SegPr oducer . addi ti onal Decl arati ons preserve=yes
/| ##end Wehar SeqPr oducer . addi ti onal Decl ar ati ons

C-69

MSRC-5000SCA

Appendix C
rev. 2.1 |
1
/| ## LongSeqPr oducer Docunentati on
/1 This interface is inplenmented by pull producers and
/1 used by a pull consuner that gets (pull) a long
/1 sequence froma pull producer.

/1 ## Category: Pull _Port_ Producer | DL_Conponents

i nterface LongSeqgProducer ({
/| ##begi n LongSeqProducer.initial Decl arations preserve=yes
/| ##end LongSeqgProducer.initi al Decl arati ons

I/ Attributes

/1 Rel ationshi ps

/] Associ ations

/1 Operations

/1 ## Operation: getlLongMsg
/1 ## Documnent ati on

/1 This operation is used to pull a sequence of Longs
/1 infornation to be received or transmtted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nmessage being pull ed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

voi d get LongMsg(out Port Types::LongSequence nmsg, out CF:.:Properties
options);

/| ##begi n LongSeqPr oducer . addi ti onal Decl arati ons preserve=yes
/| ##end LongSeqgPr oducer . addi ti onal Decl arati ons

I

/1 ## Fl oat SeqPr oducer Docunentati on:

/1 This interface is inplenmented by pull producers and
/1 used by a pull consuner that gets (pull) a float

/1 sequence froma pull producer.

/1 ## Category: Pull _Port_ Producer | DL_Conponents

i nterface Fl oat SeqProducer {
/| ##begi n Fl oat SegProducer.initial Decl arati ons preserve=yes
/| ##end FIl oat SeqPr oducer.initial Decl arati ons

[/l Attributes

/1 Rel ati onshi ps

C-70

MSRC-5000SCA
Appendix C
rev. 2.1 |

// Associ ations

/1 Operations

/1 ## Operation: getFl oat Msg
/1 ## Docunent ati on:

/1 This operation is used to pull a sequence of floats
/1 i nformation to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nessage bei ng pul |l ed has
/1 data and control information (classification,

/1 source, destination, priority, etc.).

voi d get Fl oat Msg(out Port Types:: Fl oat Sequence nmsg, out CF::Properties
options);

/| ##begi n Fl oat SegPr oducer. addi ti onal Decl arati ons preserve=yes
/| ##end Fl oat SeqPr oducer . addi ti onal Decl arati ons

1

/ | ## Doubl eSeqPr oducer Documnentati on:

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) a double
/1 sequence froma pull producer.

/1 ## Category: Pull _Port_Producer_IDL_Conponents

i nterface Doubl eSeqProducer {
/| ##begi n Doubl eSeqProducer.initial Decl arati ons preserve=yes
/| ##end Doubl eSeqProducer.initi al Decl arati ons

/Il Attributes

/1 Rel ati onshi ps

// Associ ations

/1 Operations

/1 ## Operation: getDoubl eMsg
/1 ## Docunent ati on:

/1 This operation is used to pull a sequence of

/1 Doubl es information to be received or transmitted
/1 t hrough the RADI O from one object to the next

/1 "destination" (Pull Consumer) object. The nessage
/1 being pulled has data and control infornmation

/1 (classification, source, destination, priority,

/1 etc.).

C-711

M SRC-5000SCA
Appendix C
rev. 2.1 |
voi d get Doubl eMsg(out Port Types:: Doubl eSequence nsg, out CF::Properties
options);

/ | ##begi n Doubl eSeqPr oducer . addi ti onal Decl arati ons preserve=yes
/ | ##end Doubl eSeqPr oducer. addi ti onal Decl arati ons

1

/1 ## LongDoubl eSegPr oducer Docunent ati on:

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) a long

/1 doubl e sequence froma pull producer.

/1 ## Category: Pull _Port_Producer_|DL_Conponents

i nterface LongDoubl eSeqProducer {
/| ##begi n LongDoubl eSeqgPr oducer.initial Decl arati ons preserve=yes
/| ##end LongDoubl eSeqPr oducer.initi al Decl arati ons

/|l Attributes

/1 Rel ati onshi ps

// Associ ations

/1 Operations

/1 ## Operation: getlLongDoubl eMsg
/1 ## Docunent ati on:

/1 This operation is used to pull a sequence of Long
/1 Doubl es information to be received or transmitted
/1 t hrough the RADI O from one object to the next

/1 "destination" (Pull Consurmer) object. The nessage
/1 being pulled has data and control infornation

/1 (classification, source, destination, priority,

/1 etc.).

voi d get LongDoubl eMsg(out Port Types: : LongDoubl eSequence nsg, out
CF.: Properties options);

/| ##begi n LongDoubl eSegPr oducer . addi ti onal Decl arati ons preserve=yes
/I ##end LongDoubl eSeqPr oducer. addi ti onal Decl ar ati ons

1

/1 ## WstringSegProducer Docurnentation:

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) a wide

/1 string sequence froma pull producer.

/| ## Category: Pull _Port_Producer_|DL_Conponents

C-72

M SRC-5000SCA
Appendix C
rev. 2.1 |
i nterface Wstri ngSegProducer ({

/| ##begi n Wstri ngSeqProducer.initial Declarations preserve=yes
/I ##end Wstri ngSegProducer.initial Decl arations

/1 Attributes
/1 Rel ati onshi ps
/] Associ ations
/1 Operations

/1 ## QOperation: getWtringMsg
/| ## Docunent ati on:

/1 This operation is used to pull a CORBA Wtring

/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The message being pul |l ed has
/1 data and control information (classification,

/1 source, destination, priority, etc.).

voi d getWstri ngMsg(out Port Types:: WtringSequence nsg, out CF::Properties
options);

/| ##begi n Wstri ngSeqPr oducer . addi ti onal Decl arati ons preserve=yes
/| ##end Wstri ngSeqgProducer. addi ti onal Decl arati ons

1

/1 ## AnyProducer Docunentati on:

/1 This interface is inplenmented by pull producers and
/1 used by a pull consuner that gets (pull) an octet
/1 sequence froma pull producer.

/1 ## Category: Pull _Port_ Producer | DL_Conponents

i nterface AnyProducer {
/| ##begi n AnyProducer.initial Decl arati ons preserve=yes
/| ##end AnyPr oducer.initi al Decl arati ons

|/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: getMsg
/1 ## Documnent ati on:

C-73

MSRC-5000SCA

Appendix C
rev. 2.1 |
/1 This operation is used to pull a CORBA any
/1 infornation to be received or transmtted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nmessage being pul |l ed has
/1 data and control information (classification,
/1 source, destination, priority, etc.).

voi d get Msg(out CF::DataType nsg, out CF:.:Properties options);

/| ##begi n AnyPr oducer. addi ti onal Decl arati ons preserve=yes
/| ##end AnyProducer. addi ti onal Decl arati ons

1

/1 ## Short SegPr oducer Docunentati on:

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) a short

/1 sequence froma pull producer.

/| ## Category: Pull _Port_Producer_|DL_Conponents

i nterface Short SeqProducer {
/| ##begi n Short SegProducer.initial Decl arati ons preserve=yes
/| ##end Short SeqPr oducer.initial Decl arati ons

/|l Attributes

/1 Rel ati onshi ps

// Associ ations

/1 Operations

/1 ## Operation: getShort Mg
/| ## Docunent ati on:

/1 This operation is used to pull a sequence of Shorts
/1 information to be received or transmitted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nessage bei ng pul |l ed has
/1 data and control information (classification,

/1 source, destination, priority, etc.).

voi d get Short Msg(out Port Types:: Short Sequence nmsg, out CF::Properties
options);

/| ##begi n Short SegPr oducer. addi ti onal Decl arati ons preserve=yes
/| ##end Short SeqPr oducer . addi ti onal Decl arati ons

b
/ | ## Bool eanSeqgPr oducer Documnent ati on:
/1 This interface is inplenmented by pull producers and

C-74

M SRC-5000SCA
Appendix C
rev. 2.1 |
/1 used by a pull consuner that gets (pull) a bool ean
/1 sequence froma pull producer.
/1 ## Category: Pull _Port_ Producer | DL_Conponents
i nterface Bool eanSegPr oducer {
/| ##begi n Bool eanSeqProducer.initial Decl arati ons preserve=yes
/| ##end Bool eanSeqgPr oducer.initi al Decl arati ons

/1 Attributes
/1 Rel ati onshi ps
/] Associ ations
/1 Operations

/1 ## QOperation: getBool eanMsg
[I ## Docunent ati on:

/1 This operation is used to pull a sequence of

/1 Bool eans information to be received or transmtted
/1 t hrough the RADI O from one object to the next

/1 "destination" (Pull Consumer) object. The nessage
/1 being pulled has data and control infornmation

/1 (classification, source, destination, priority,

/1 etc.).

voi d get Bool eanMsg(out Port Types: : Bool eanSequence nsg, out CF::Properties
options);

/| ##begi n Bool eanSeqPr oducer . addi ti onal Decl arati ons preserve=yes
/ | ##end Bool eanSeqgPr oducer. addi ti onal Decl ar ati ons

b

/| ## Char SeqPr oducer Docunent ati on:

/1 This interface is inplemented by pull producers and
/1 used by a pull consuner that gets (pull) a

/1 character sequence froma pull producer.

/1 ## Category: Pull _Port_ Producer | DL_Conponents

i nterface Char SegProducer ({
/| ##begi n Char SeqPr oducer.initial Decl arati ons preserve=yes
/ | ##end Char SeqProducer.initi al Decl arati ons
/1 Attributes

/1 Rel ationshi ps

/] Associ ations

C-75

MSRC-5000SCA
Appendix C
rev. 2.1 |

/1 Operations

/1 ## Operation: getCharMsg
/1 ## Documnent ati on

/1 This operation is used to pull a sequence of Chars
/1 infornation to be received or transmtted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nmessage being pul |l ed has
/1 data and control information (classification

/1 source, destination, priority, etc.).

voi d get Char Msg(out Port Types: : Char Sequence nmsg, out CF:.:Properties
options);

/| ##begi n Char SeqPr oducer . addi ti onal Decl arati ons preserve=yes
/| ##end Char SeqPr oducer . addi ti onal Decl arati ons

1

/1 ## LongLongSeqPr oducer Docunentati on

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) a long

/1 | ong sequence froma pull producer

/| ## Category: Pull _Port_Producer_I|DL_Conponents

i nterface LongLongSeqProducer {
/| ##begi n LongLongSeqPr oducer.initial Decl arati ons preserve=yes
/| ##end LonglLongSeqProducer.initi al Decl arati ons

[/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: getlLongLongMsg
/1 ## Document ati on

/1 This operation is used to pull a sequence of Long
/1 Longs information to be received or transmtted
/1 t hrough the RADI O from one object to the next

/1 "destination" (Pull Consunmer) object. The nessage
/1 being pulled has data and control infornmation

/1 (classification, source, destination, priority,
/1 etc.).

voi d get LongLongMsg(out Port Types::LongLongSequence nmsg, out CF:.:Properties
options);

C-76

M SRC-5000SCA
Appendix C
rev. 2.1 |
/| ##begi n LongLongSeqPr oducer . addi ti onal Decl arati ons preserve=yes
/I ##end LongLongSeqPr oducer. addi ti onal Decl arati ons

I

/1 ## U ongSeqgPr oducer Docunentation

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) an

/1 unsi gned | ong sequence froma pull producer

/| ## Category: Pull _Port_Producer_|DL_Conponents

i nterface U ongSeqProducer {
/I ##begi n Ul ongSeqgPr oducer.initial Decl arati ons preserve=yes
/I ##end U ongSeqPr oducer.initi al Decl arati ons

/] Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: getU ongMsg
/| ## Docunent ati on:

/1 This operation is used to pull a sequence of

/1 Unsi gned Longs information to be received or

/1 transmitted through the RADI O from one object to
/1 the next "destination" (Pull Consuner) object. The
/1 message being pulled has data and control

/1 i nformati on (classification, source, destination
/1 priority, etc.).

voi d get U ongMsg(out PortTypes:: U ongSequence nmsg, out CF::Properties
options);

/1 ##begi n U ongSeqgPr oducer. addi ti onal Decl arati ons preserve=yes
/I ##end U ongSeqPr oducer. addi ti onal Decl arati ons

i

/1 ## U ongLongSeqPr oducer Document ati on

/1 This interface is inplenented by pull producers and
/1 used by a pull consuner that gets (pull) an

/1 unsi gned |l ong | ong sequence froma pull producer

/| ## Category: Pull _Port_Producer_I|DL_Conponents

i nterface U ongLongSeqProducer {
/| ##begi n U ongLongSeqProducer.initial Decl arati ons preserve=yes
/| ##end U ongLongSeqgProducer.initi al Decl arati ons

/] Attributes

C-77

MSRC-5000SCA
Appendix C
rev. 2.1 |

/1 Rel ati onshi ps
/1 Associ ati ons
/1 Operations

/1 ## Operation: getULongLongMsg
/| ## Docunent ati on:

/1 This operation is used to pull a sequence of

/1 Unsi gned Long Longs information to be received or
/1 transmitted through the RADI O from one object to
/1 the next "destination"” (Pull Consumer) object. The
/1 nmessage being pulled has data and control

/1 informati on (classification, source, destination,
/1 priority, etc.).

voi d get ULongLongMsg(out Port Types:: U ongLongSequence nmsg, out

:Properties options);
/1 ##begi n U ongLongSeqPr oducer . addi ti onal Decl arati ons preserve=yes
/I ##end U ongLongSeqgPr oducer . addi ti onal Decl arati ons
1
/1 ## Ushort SeqPr oducer Docunentati on:
/1 This interface is inplenmented by pull producers and
/1 used by a pull consuner that gets (pull) an
/1 unsi gned short sequence froma pull producer.

/| ## Category: Pull _Port_Producer_I|DL_Conponents

i nterface Ushort SeqProducer {
/| ##begi n Ushort SeqProducer.initial Decl arati ons preserve=yes
/I ##end Ushort SeqProducer.initi al Decl arations

/] Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: getUshort Msg
/| ## Docunent ati on:

/1 This operation is used to pull a sequence of
/1 Unsi gned Shorts information to be received or
/1 transmitted through the RADI O from one object to
/1 the next "destination" (Pull Consumer) object. The

C-78

MSRC-5000SCA

Appendix C
rev. 2.1 |
/1 nmessage being pulled has data and control
/1 informati on (classification, source, destination,
/1 priority, etc.).

voi d get Ushort Msg(out Port Types:: Ushort Sequence nsg, out CF::Properties
options);

/| ##begi n Ushort SeqPr oducer . addi ti onal Decl arati ons preserve=yes
/| ##end Ushort SeqPr oducer . addi ti onal Decl arati ons

1

/1 ## StringSeqProducer Documnentation:

/1 This interface is inplenmented by pull producers and
/1 used by a pull consuner that gets (pull) a stringt
/1 sequence froma pull producer.

/1 ## Category: Pull _Port_ Producer | DL_Conponents

i nterface StringSeqProducer ({
/| ##begi n StringSeqProducer.initial Decl arati ons preserve=yes
/I ##end StringSeqProducer.initial Declarations

I/ Attributes

/1 Rel ati onshi ps

/] Associ ations

/1 Operations

/1 ## Operation: getStringMsg
/1 ## Documnent ati on:

/1 This operation is used to pull a CORBA string

/1 information to be received or transmtted through
/1 the RADI O from one object to the next "destination"
/1 (Pul | Consuner) object. The nmessage being pull ed has
/1 data and control information (classification,

/1 source, destination, priority, etc.).

void getStringMsg(out CF::StringSequence nsg, out CF:.:Properties options);

/| ##begi n StringSeqProducer. addi ti onal Decl arati ons preserve=yes
/I ##end StringSeqProducer. addi ti onal Decl arati ons

s
s

#endi f

C-79

MSRC-5000SCA
Appendix C
rev. 2.1 |

C.5 LogService MODULE.

The LogService module contains the Log servant interface and the types necessary for alog
producer to generate standard SCA log records as depicted in Figure C-5.

LogSenice

Log

Figure C-5. LogService Module.

The following isthe LogService Module IDL generated from the Rational Rose model, version
2000e.

#i fndef __LOGSERVI CE_DEFI NED
#define __LOGSERVI CE_DEFI NED

/* Cmidentification
9X% %P0 %% N */

/* The LogService nodul e contains the Log servant interface and the types
necessary for a | og producer to generate standard SCA | og records.

This nmodul e al so defines the types necessary to control the |oggi ng output
of a | og producer. Conponents that produce |ogs are required to inplenent
configure properties that allow the conponent to be configured as to what
log records it will output. */

nodul e LogService {

/* The LogLevel Type is an enuneration type that is utilized to identify
log levels. */

enum LogLevel Type {
FAl LURE_ALARM
DEGRADED_ALRAM
EXCEPTI ON_ERROR
FLOW CONTROL_ERRCR,
RANGE_ERROR,
USAGE_ERROR
ADM NI STRATI VE_EVENT,
STATI STI C_REPORT
PROGRAMVER _DEBUGL,
PROGRAMVER _DEBUR2,

C-80

M SRC-5000SCA
Appendix C
rev. 2.1 |
PROGRAMVER DEBUGS,
PROGRAMVER DEBUG4,
PROGRAMVER DEBUGS,
PROGRAMVER DEBUGS,
PROGRAMVER DEBUGY,
PROGRAMVER DEBUGS,
PROGRAMVER DEBUG9,
PROGRAMVER DEBUGLO,
PROGRAMVER DEBUGL,
PROGRAMVER DEBUGL 2,
PROGRAMVER DEBUGL3,
PROGRAMVER DEBUGL A4,
PROGRAMVER DEBUGLS5,
PROGRAMVER DEBUGL6

}

/* The LogLevel Sequence type is an unbounded sequence of LoglLevel Types.
The PRODUCER LOG LEVEL configure/query property is of the
LogLevel Sequence type. */

typedef sequence <LoglLevel Type> LoglLevel SequenceType;

/* The Producer LogRecordType defines the |og records that sent to a
Log. */

struct ProducerLogRecordType {
/* This attribute uniquely identifies the source of a |og record.
The value is unique within the Domai n. The Donmai nManager and
ApplicationFactory are responsible for assigning this value. */
unsi gned | ong producer| D
/* This attrubute identifies the producer of a log record in
textual format. This field is assigned by the | og producer, thus

is not unique within the Domain (e.g. - nmultiple instances of an
application will assign the sane nane to the ProducerNane field.)
*/

string producer Nane;
/* This attribute identifies the type of nmessage being | ogged as
defined by the type LoglLevel Type. */
LogLevel Type | evel
/* This attribute contains the informational nessage being
| ogged. */
string | ogDat a;
1

/* A Log is utilized by CF and CORBA capabl e application conmponents to
store informational messages. These informational nessages are referred
to as 'log records' in this docunent. The interface provides operations
for witing log records to a Log, retrieving log records froma Log,
control of a log, and status of a Log. */

interface Log {
/* The AdministrativeStateType denotes the active |ogging state
of an operational Log. Wen set to UNLOCKED the Log wi |l accept
records for storage, per its operational paranmeters. Wen set to
LOCKED the Log will not accept new | og records and records can be
read or deleted only. */

C-81

MSRC-5000SCA

Appendix C
rev. 2.1 |
enum Adni ni strativeStateType {
LOCKED,
UNLOCKED

}s

/* The AvailabilityStatusType denotes whether or not the Log is
avai |l abl e for use. When true,of fDuty indicates the Log is LOCKED
(administrative state) or DI SABLED (operational state). Wen
true, logFull indicates the Log storage is full. */

struct AvailabilityStatusType {
bool ean of f Duty;
bool ean | ogFul |

}s

/* This type specifies the action that the Log shoul d take when
itsit's internal buffers beconme full of data, |eaving no roomfor
new records to be witten. Wap indicates that the Log wll
overwite the oldest log records with the newest records, as they
are witten to the Log.Halt indicates that the Log will stop

| oggi ng when full. */

enum LogFul | Acti onType {
VRAP,
HALT

s

/* The enuneration Operational StateType defines the Log states of
operation. When the Log is ENABLED it is fully functional and is
avail abl e for use by |og producer and | og consunmer clients. A Log
that is DI SABLED has encountered a runtine problemand is not
avai |l abl e for use by | og producers or |og consuners. The internal
error conditions that cause the Log to set the operational state
to ENABLED or DI SABLED are inplenentation specific. */

enum Qper ati onal St at eType {
Dl SABLED,
ENABLED

1
/* This exception indicates that the log is enpty. */

exception LogEmty {
i

exception InvalidLogFull Action {
string Details;
1
/* This exception indicates that a provided paraneter was
invalid. */

exception InvalidParam {
string details;
i

C-82

MSRC-5000SCA
Appendix C
rev. 2.1 |

/* This type provides the time fornat used when witing | og
records. The Log inplenentation is required to produce tine-
stanps conpatible with the Posix defined struct tm */

typedef unsigned | ong | ong LogTi neType;

/* This type provides the record IDthat is assigned to a |log
record. */

t ypedef unsigned | ong | ong Recordl dType;

/* The LogRecordType defines the format of the log records as
stored in the Log. The 'info' field is the ProducerLogRecordType
that is witten by a client to the Log. */

struct LogRecordType {
Recor dl dType i d;
LogTi neType ti ne;
Producer LogRecor dType i nfo;
i

/* The Producer LogRecordSequence type defines a sequence of
Producer LogRecor dTypes. */

t ypedef
sequence <Producer LogRecordType> Producer LogRecor dSequence;

/* The LogRecor dSequence type defines an unbounded sequence of
|l og records. */

t ypedef sequence <LogRecor dType> LogRecor dSequence;

/* This operation provides the maxi mum nunber of bytes that the
Log can store.

The get MaxSi zei s operation returns the integer nunber of bytes
that the Log is capable of storing.

Thi s operation does not raise any exceptions.
@ oseui d 3B268C6203B5 */
unsi gned | ong | ong get MaxSi ze ();

/* This operation sets the maxi mum nunber of bytes that the Log
can store

The set MaxSi ze operation sets the maxi mum si ze of the |og
nmeasured in nunber of bytes.

Thi s operation does not return a val ue.

The set MaxSi ze operation raises the InvalidParam exception if the
size paraneter passed in is less than the current size of the
Log.

The set MaxSi zeis operation rai ses the InvalidParam exception if

C-83

M SRC-5000SCA
Appendix C
rev. 2.1 |
the size parameter passed in is less than the current size of the
Lo
@gseui d 3B268CAF0207 */
voi d set MaxSi ze (
in unsigned | ong | ong size

rai ses (IlnvalidParam;

/* The getCurrent Si ze operation provides the current size of the
| og storage in bytes.

The getCurrentSi ze operation returns the current size of the log
storage in bytes (i.e. if the log contains no records, get
CurrentSize will return a value of 0.).

Thi s operation does not return any exceptions.
@ oseui d 3B268D1500C4 */
unsi gned long long getCurrentSize ();

/* The get NunmRecords operation provides the number of records
present in the Log.

The get NunRecords operation returns the current number of |og
records contained in the Log.

Thi s operation does not raise any exceptions.
@ oseui d 3B268D2B00D9 */
unsi gned | ong | ong get NunRecords ();

/* The get LogFul | Action operation provides the action taken when
the Log becones full.

The get LogFul | Action operation returns the Log's full action
setting.

Thi s operation does not return any exceptions.
@ oseui d 3B268D4603BD */
LogFul | Acti onType get LogFul | Action ();

/* The setLogFul | Action operation is used to configure the Log to
ei ther WRAP or HALT when the Log becones full.

The set LogFul | Acti on operation shall set the action taken when
t he maxi mum si ze of the Log has been reached.

Thi s operation does not return a val ue.

Thi s operation does not return any exceptions.
@ oseui d 3B268D6503B8 */
voi d set LogFul | Action (

in LogFull Acti onType action

)

/* The getAvailabilityStatus operation is used to read the
availability status of the Log.

C-84

MSRC-5000SCA
Appendix C
rev. 2.1 |

The get Avail abilityStatus operation returns the current
avai lability status of the Log.

Thi s operation does not raise any exceptions.
@ oseui d 3B268DD302CF */
Avail abilityStatusType getAvailabilityStatus ();

/* The get Admini strativeState is used to read the adm nistrative
state of the Log.

The get AdnministrativeState operation returns the current
adm nistrative state of the Log.

Thi s operation does not raise any exceptions.
@ oseui d 3B268DEC0376 */
Adm ni strativeStateType get Adni nistrativeState ();

/* The set Admini strativeState operation provides wite access to
the adnministrative state val ue.

The set AdnministrativeState operation sets the adninistrative
state of the Log.

Thi s operation does not return a val ue.

Thi s operation does not raise any exceptions.
@ oseui d 3B268EO503AE */
voi d set AdministrativeState (

in AdnministrativeStateType state

)

/* The get Operational State operation returns the operational
state of the Log.

Thi s operation does not raise any exceptions.
@ oseui d 3B268F0B02D8 */
Oper ational StateType get Operational State ();

/* The witeRecords operation provides the method for witing | og
records to the Log. The operation is defined as oneway to
mnimze client overhead while witing to the Log.

The writeRecords operation adds each |og record supplied in the
records paraneter to the Log. Wen there is insufficient storage
to add one of the supplied log records to the Log, and the
LogFul | Action is set to HALT, the witeRecords nethod sets the
availability status logFull state to true. (i.e. if 3 records
are provided in the records paranmeter, and while trying to wite

the second record to the log, the record will not fit, then the
Llog is considered to be full therefore the second and third
records will not be stored in the Log but the first record would

have been successfully stored.). The witeRecords operation
wites the current tine to the tine field of the LogRecord | og
record in the format defined by the standard Posix type struct
tm The witeRecords operation assigns a unique record ID to the
id field of the LogRecordl og record. Log records accepted for

C-85

MSRC-5000SCA
Appendix C
rev. 2.1 |

storage by the witeRecords are nade available for retrieval in
the order received.

Thi s operation does not return a val ue.

Thi s operation does not raise any exceptions.
@ oseui d 3B32456C03B8 */
oneway void witeRecords (

i n Producer LogRecor dSequence records

)

/* The get Recor dl DFronii ne operation is used to get the record ID
of the first record in the log with a tinme-stanp that is greater
than, or equal to, the time specified in the paraneter.

The get Recordl DFronili me operation returns the record ID of the
first record in the log with a tine-stanp that is greater than

or equal to, the time specified in the fronflime paraneter. The
get Recor dl DFronfTi ne operation returns zero if no record exists in
the log with a tinme-stanp that is greater than, or equal to,the
time specified in the fronilime paraneter.

When the Log is enpty, the get Recordl DFronTli ne operation raises
the LogEnpty exception.
@ oseui d 3B33581D02C4 */
Recor dl dType get Recordl dFronili me (
in LogTi meType fronti ne

)
rai ses (LogEnpty);

/* The retrieveByl D operation is used to get a specified nunber
of records froma Log.

The retrieveByl D operation returns a |l og record sequence t hat
begins with the record specified by the currentlD parameter. The
nunber of records in the |og record sequence returned by the
retrieveByl D operation is equal to the nunber of records

speci fied by the howvany paraneter, or the number of records
avail able if the number of records specified by the howvany

par ameter cannot be net. The retrieveBylD operation sets the

i nout paraneter currentld to the LogRecord id of next record
after the last record in the log record sequence returned. |f
the record specified by currentl D does not exist, the
retrieveByl D operation returns an enpty list (zero) of log
records. |If the Log is enpty, the retrieveByl D operation returns
an enpty list of log records.

Thi s operation does not raise any exceptions.
@ oseui d 3B32456D000C */
LogRecor dSequence retrieveByld (

i nout Recordl dType currentld,

i n unsi gned | ong howvany

)

/* The clearLog operation provides the nethod for renoving all of
the I og records fromthe Log.

C-86

MSRC-5000SCA
Appendix C
rev. 2.1 |

The cl earLog operation deletes all records fromthe Log. The

cl earLog operation sets the current size of the Log storage to
zero. The clearlLog operation sets the current number of records
in the Log to zero. The clearLog operation sets the |ogFul
availability status elenment to false.

The cl earLog operation does not return a val ue.
Thi s operation does not raise any exceptions.
@ oseui d 3B32456D003E */

void clearLog ();

/* The destroy operation provides a means by which an
instantiated Log may be torn down.

The destroy operation releases all internal nenory and/or storage
al l ocated by theLog. The destroy operation tears down the
conponent (i.e. released fromthe CORBA environment).

The destroy operation does not return a val ue.

Thi s operation does not raise any exceptions.

@ oseui d 3B32456D007A */
voi d destroy ();

}

#endi f

C-87

	CORE FRAMEWORK IDL
	CORE FRAMEWORK IDL.
	PortTypes MODULE.
	PushPorts MODULE.
	PullPorts MODULE.
	LogService MODULE.

